Home
Class 12
MATHS
Evaluate int e^(x) cos^(2) x dx...

Evaluate `int e^(x) cos^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int e^x \cos^2 x \, dx \), we will use the method of integration by parts. ### Step-by-Step Solution: 1. **Identify parts for integration by parts**: We will let: - \( u = \cos^2 x \) (first function) - \( dv = e^x \, dx \) (second function) 2. **Differentiate and integrate**: - Differentiate \( u \): \[ du = -2 \cos x \sin x \, dx = -\sin(2x) \, dx \] - Integrate \( dv \): \[ v = \int e^x \, dx = e^x \] 3. **Apply the integration by parts formula**: The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Applying this, we have: \[ I = \cos^2 x \cdot e^x - \int e^x (-\sin(2x)) \, dx \] Simplifying, we get: \[ I = e^x \cos^2 x + \int e^x \sin(2x) \, dx \] 4. **Evaluate the new integral**: Let’s denote the new integral as \( I_1 = \int e^x \sin(2x) \, dx \). We will again use integration by parts: - Let: - \( u = \sin(2x) \) - \( dv = e^x \, dx \) - Then: - \( du = 2 \cos(2x) \, dx \) - \( v = e^x \) 5. **Apply integration by parts again**: \[ I_1 = \sin(2x) e^x - \int e^x (2 \cos(2x)) \, dx \] Simplifying, we have: \[ I_1 = e^x \sin(2x) - 2 \int e^x \cos(2x) \, dx \] 6. **Denote the new integral**: Let \( I_2 = \int e^x \cos(2x) \, dx \). We will again apply integration by parts: - Let: - \( u = \cos(2x) \) - \( dv = e^x \, dx \) - Then: - \( du = -2 \sin(2x) \, dx \) - \( v = e^x \) 7. **Apply integration by parts**: \[ I_2 = \cos(2x) e^x - \int e^x (-2 \sin(2x)) \, dx \] Simplifying, we have: \[ I_2 = e^x \cos(2x) + 2 I_1 \] 8. **Combine the equations**: Now substituting \( I_2 \) back into the equation for \( I_1 \): \[ I_1 = e^x \sin(2x) - 2(e^x \cos(2x) + 2 I_1) \] Rearranging gives: \[ I_1 + 4 I_1 = e^x \sin(2x) - 2 e^x \cos(2x) \] Thus: \[ 5 I_1 = e^x (\sin(2x) - 2 \cos(2x)) \] Therefore: \[ I_1 = \frac{e^x (\sin(2x) - 2 \cos(2x))}{5} \] 9. **Substituting back to find \( I \)**: Now substituting \( I_1 \) back into the equation for \( I \): \[ I = e^x \cos^2 x + \frac{e^x (\sin(2x) - 2 \cos(2x))}{5} \] 10. **Final result**: The final result for the integral is: \[ I = e^x \left( \cos^2 x + \frac{\sin(2x) - 2 \cos(2x)}{5} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int e^(x) cos^(2) x (cos x-3 sin x ) dx

Evaluate: inte^(2x)cos^2x\ dx

Evaluate: int_ e^(x) . x^(2) dx

int e^(3x) " cos 2x dx "

Evaluate int x^(2) cos x dx

Evaluate int e^(x) ((1+sinx cos x)/(cos^(2)x))dx

Evaluate int(e^(sinx))/(cos^2x)(xcos^3x-sinx) dx

Evaluate : int (1)/(" sin"^(2) x " cos"^(2) x ") ") " dx "

Evaluate: int(1+x^2)cos2x\ dx

Evaluate: int1/(x^2)cos^2(1/x)dx