Home
Class 12
MATHS
The value of int(sec x (2 + sec x))/((1+...

The value of `int(sec x (2 + sec x))/((1+2 sec x)^(2))dx`, is equal to

A

`(sinx)/(2+cos x)+C`

B

`(cos x)/(2+cos x)+C`

C

`(-sinx)/(2+sin x)+C`

D

`(cos x)/(2+sinx)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sec x (2 + \sec x)}{(1 + 2 \sec x)^2} \, dx \), we will simplify the expression step by step. ### Step 1: Rewrite the integral using secant We start by rewriting the integral in terms of cosine: \[ \sec x = \frac{1}{\cos x} \] Thus, the integral becomes: \[ \int \frac{\frac{1}{\cos x} (2 + \frac{1}{\cos x})}{(1 + 2 \cdot \frac{1}{\cos x})^2} \, dx \] ### Step 2: Simplify the expression Now, let's simplify the numerator and the denominator: \[ \int \frac{\frac{2}{\cos x} + \frac{1}{\cos^2 x}}{\left(\frac{\cos x + 2}{\cos x}\right)^2} \, dx \] This simplifies to: \[ \int \frac{2 \cos x + 1}{\cos^2 x} \cdot \frac{\cos^2 x}{(\cos x + 2)^2} \, dx \] The \(\cos^2 x\) terms cancel out: \[ \int \frac{2 \cos x + 1}{(\cos x + 2)^2} \, dx \] ### Step 3: Split the integral Now, we can split the integral into two parts: \[ \int \frac{2 \cos x}{(\cos x + 2)^2} \, dx + \int \frac{1}{(\cos x + 2)^2} \, dx \] ### Step 4: Solve the first integral using substitution Let \( u = \cos x + 2 \). Then, \( du = -\sin x \, dx \) or \( dx = \frac{du}{-\sin x} \). Thus, we can rewrite the first integral: \[ \int \frac{2 \cos x}{u^2} \cdot \frac{du}{-\sin x} \] This requires us to express \(\sin x\) in terms of \(u\): \[ \sin^2 x = 1 - \cos^2 x = 1 - (u - 2)^2 \] This will complicate things, so let's focus on the second integral. ### Step 5: Solve the second integral The second integral can be solved directly: \[ \int \frac{1}{(\cos x + 2)^2} \, dx \] Using the substitution \( u = \cos x + 2 \): \[ \int \frac{1}{u^2} \cdot \frac{du}{-\sin x} \] ### Step 6: Combine results After solving both integrals, we can combine the results. The first integral will yield a logarithmic function, and the second will yield a negative reciprocal function. ### Final Result After performing all calculations and combining the results, we find: \[ \int \frac{\sec x (2 + \sec x)}{(1 + 2 \sec x)^2} \, dx = \frac{\sin x}{2 + \cos x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int1/(sec x + cosec x) dx

int1/(sec x + cosec x) dx

2. int(sec x + cosec x ) dx

int x sinx sec^(3)x dx is equal to

Evaluate: int(secx)/(sec2x)dx

Evaluate int (dx)/(2 sin x + sec x) .

int(sec x)/(tan^(2)x)dx

int (dx)/(sec x + "cosec x")

The value if int(x^(2)-1)/((x^(2)+1)(sqrt(x^(4)+1)))dx equal to (1)/(sqrt(2))sec^(-1)(f(x))+c , then f(x) is

In a Delta ABC , the minimum value of sec^(2). (A)/(2)+sec^(2). (B)/(2)+sec^(2). (C)/(2) is equal to