Home
Class 12
MATHS
The value of intlog (sqrt(1- x) + sqrt(1...

The value of `intlog (sqrt(1- x) + sqrt(1+ x)) dx, ` is equal to

A

`x log (sqrt(1-x)+sqrt(1+x))+1/2 x - 1/2 sin^(-1)(x)+C`

B

`x log (sqrt(1-x)+sqrt(1+x))+1/2 x + 1/2 sin^(-1)(x)+C`

C

`x log (sqrt(1-x)+sqrt(1+x))- 1/2 x + 1/2 sin^(-1)(x)+C`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \log(\sqrt{1 - x} + \sqrt{1 + x}) \, dx \), we will follow a systematic approach using integration by parts. ### Step-by-Step Solution: 1. **Set Up the Integral**: \[ I = \int \log(\sqrt{1 - x} + \sqrt{1 + x}) \, dx \] 2. **Use Integration by Parts**: We choose: - \( u = \log(\sqrt{1 - x} + \sqrt{1 + x}) \) - \( dv = dx \) Then, we differentiate \( u \) and integrate \( dv \): - \( du = \frac{1}{\sqrt{1 - x} + \sqrt{1 + x}} \left( \frac{-1}{2\sqrt{1 - x}} + \frac{1}{2\sqrt{1 + x}} \right) \, dx \) - \( v = x \) 3. **Apply Integration by Parts Formula**: The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] Thus, we have: \[ I = x \log(\sqrt{1 - x} + \sqrt{1 + x}) - \int x \cdot du \] 4. **Calculate \( \int x \, du \)**: Substitute \( du \): \[ I = x \log(\sqrt{1 - x} + \sqrt{1 + x}) - \int x \cdot \left( \frac{1}{\sqrt{1 - x} + \sqrt{1 + x}} \left( \frac{-1}{2\sqrt{1 - x}} + \frac{1}{2\sqrt{1 + x}} \right) \right) \, dx \] 5. **Simplify the Integral**: This integral can be simplified further. We can express it as: \[ I = x \log(\sqrt{1 - x} + \sqrt{1 + x}) + \frac{1}{2} \int \frac{x}{\sqrt{1 - x} + \sqrt{1 + x}} \left( \frac{1}{\sqrt{1 - x}} + \frac{1}{\sqrt{1 + x}} \right) \, dx \] 6. **Evaluate the Remaining Integral**: The remaining integral can be evaluated using substitution or recognizing it as a standard form. After simplification, we find: \[ \int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1}(x) \] 7. **Combine Results**: Therefore, we can combine all parts: \[ I = x \log(\sqrt{1 - x} + \sqrt{1 + x}) + \sin^{-1}(x) - x + C \] ### Final Answer: \[ I = x \log(\sqrt{1 - x} + \sqrt{1 + x}) + \sin^{-1}(x) - x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

The value of int(sqrt(1+x))/(x)dx , is

int sqrt(e^(x)-1)dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int sqrt((x)/( 1-x))dx is equal to

int_0^1log(sqrt(1-x)+sqrt(1+x))dx equals:

intln(sqrt(1+x)+sqrt(1-x))dx

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

int(1+x)/(1+3sqrt(x))dx is equal to