Home
Class 12
MATHS
int e ^(xsin x +cos x )((x ^(4) cos ^(3)...

`int e ^(xsin x +cos x )((x ^(4) cos ^(3) x-x sin x +cos x)/(x ^(2) cos ^(2) x )) dx =`

A

`e^((x sin x + cos x))*(x+(1)/(x cos x))+C`

B

`e^((x sin x + cos x ))*(x cos x (1)/(x))+C`

C

`e^((x sin x + cos x))*(x- (1)/(x cos x))+C`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int e^{x \sin x + \cos x} \left( \frac{x^4 \cos^3 x - x \sin x + \cos x}{x^2 \cos^2 x} \right) dx, \] we will break it down into manageable steps. ### Step 1: Simplify the Integral We can rewrite the integral as: \[ I = \int e^{x \sin x + \cos x} \left( \frac{x^4 \cos^3 x}{x^2 \cos^2 x} - \frac{x \sin x}{x^2 \cos^2 x} + \frac{\cos x}{x^2 \cos^2 x} \right) dx. \] This simplifies to: \[ I = \int e^{x \sin x + \cos x} \left( x^2 \cos x - \frac{\sin x}{x \cos^2 x} + \frac{1}{x^2 \cos x} \right) dx. \] ### Step 2: Break Down the Integral Let’s denote: \[ I_1 = \int e^{x \sin x + \cos x} \left( x^2 \cos x \right) dx, \] \[ I_2 = \int e^{x \sin x + \cos x} \left( -\frac{\sin x}{x \cos^2 x} + \frac{1}{x^2 \cos x} \right) dx. \] Thus, we can write: \[ I = I_1 + I_2. \] ### Step 3: Solve \(I_1\) using Integration by Parts For \(I_1\), we will use integration by parts. Let: - \(u = e^{x \sin x + \cos x}\) - \(dv = x^2 \cos x \, dx\) Then, we differentiate \(u\) and integrate \(dv\): - \(du = e^{x \sin x + \cos x} (x \cos x + \sin x) \, dx\) - \(v = \frac{x^2 \sin x + 2x \cos x}{2}\) Applying integration by parts: \[ I_1 = u v - \int v \, du. \] ### Step 4: Solve \(I_2\) For \(I_2\), we can simplify the integral further. We will need to handle each term separately: 1. For \(-\frac{\sin x}{x \cos^2 x}\), we can use substitution. 2. For \(\frac{1}{x^2 \cos x}\), we can also use substitution. Let’s denote: \[ t = x \cos x \implies dt = (\cos x - x \sin x) \, dx. \] ### Step 5: Combine Results After evaluating both \(I_1\) and \(I_2\), we combine the results: \[ I = I_1 + I_2. \] ### Final Result The final result will be: \[ I = x e^{x \sin x + \cos x} - e^{x \sin x + \cos x} \left( \frac{1}{x \cos x} \right) + C, \] where \(C\) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int cos^(3) x. sin x dx

int sin x cos(cos x)dx

int(x sin x+cos x)/(x cos x)dx

int e^(x)(sin x-cos x)/(sin^(2)x)dx

int(sin x cos x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

int(sin x cos^(3)x)/(1+cos^(2)x)dx

int(sinx. cos x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx

int (cos x)/(sin x+cos x) dx

int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

int(sin x+x cos x)/(x sin x)dx