Home
Class 12
MATHS
Evaluate int (3x-1)/((x-2)^(2))dx...

Evaluate `int (3x-1)/((x-2)^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{3x - 1}{(x - 2)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the integral: \[ I = \int \frac{3x - 1}{(x - 2)^2} \, dx \] We can rewrite the numerator \( 3x - 1 \) as \( 3(x - 2) + 6 - 1 \): \[ 3x - 1 = 3(x - 2) + 6 - 1 = 3(x - 2) + 5 \] Thus, we can express the integral as: \[ I = \int \frac{3(x - 2) + 5}{(x - 2)^2} \, dx \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I = \int \frac{3(x - 2)}{(x - 2)^2} \, dx + \int \frac{5}{(x - 2)^2} \, dx \] This simplifies to: \[ I = \int \frac{3}{x - 2} \, dx + 5 \int (x - 2)^{-2} \, dx \] ### Step 3: Evaluate the first integral The first integral is: \[ \int \frac{3}{x - 2} \, dx = 3 \ln |x - 2| \] ### Step 4: Evaluate the second integral The second integral can be evaluated using the power rule: \[ \int (x - 2)^{-2} \, dx = \frac{(x - 2)^{-1}}{-1} = -\frac{1}{x - 2} \] Thus, \[ 5 \int (x - 2)^{-2} \, dx = -\frac{5}{x - 2} \] ### Step 5: Combine the results Combining both parts, we have: \[ I = 3 \ln |x - 2| - \frac{5}{x - 2} + C \] where \( C \) is the constant of integration. ### Final Answer The evaluated integral is: \[ \int \frac{3x - 1}{(x - 2)^2} \, dx = 3 \ln |x - 2| - \frac{5}{x - 2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(3x+1)/((x-2)^2(x+2))\ dx

Evaluate int(x^2+3x-1)/((x+1)^2)dx

Evaluate : int (3x+1)/(2x^(2)-2x+3)dx

Evaluate : int(2x-3)/((x-1)^2(2x+3))dx

Evaluate: int(2x+1)/((x-2)(x-3))\ dx

Evaluate: int(x^2)/((x-1)^3(x+1))dx

Evaluate: int(x^3)/((x-1)(x-2))\ dx

Evaluate: int(x^3)/((x-1)(x-2))\ dx

Evaluate: int(x^2+3x+1)/((x+1)^2)dx

Evaluate: int(2x-3)/((x^2-1)(2x+3))dx