Home
Class 12
MATHS
Evaluate int (x^(2)+x+1)/(x^(2)(x+2))dx...

Evaluate `int (x^(2)+x+1)/(x^(2)(x+2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^2 + x + 1}{x^2 (x + 2)} \, dx, \] we will use the method of partial fractions. ### Step 1: Set up the partial fraction decomposition We can express the integrand as: \[ \frac{x^2 + x + 1}{x^2 (x + 2)} = \frac{Ax + B}{x^2} + \frac{C}{x + 2}, \] where \(A\), \(B\), and \(C\) are constants to be determined. ### Step 2: Combine the right-hand side Multiplying both sides by the denominator \(x^2 (x + 2)\) gives: \[ x^2 + x + 1 = (Ax + B)(x + 2) + Cx^2. \] Expanding the right-hand side: \[ (Ax + B)(x + 2) = Ax^2 + 2Ax + Bx + 2B = Ax^2 + (2A + B)x + 2B. \] Thus, we have: \[ x^2 + x + 1 = (A + C)x^2 + (2A + B)x + 2B. \] ### Step 3: Compare coefficients Now, we can compare coefficients from both sides: 1. Coefficient of \(x^2\): \(A + C = 1\) 2. Coefficient of \(x\): \(2A + B = 1\) 3. Constant term: \(2B = 1\) ### Step 4: Solve the system of equations From the third equation \(2B = 1\), we find: \[ B = \frac{1}{2}. \] Substituting \(B\) into the second equation: \[ 2A + \frac{1}{2} = 1 \implies 2A = \frac{1}{2} \implies A = \frac{1}{4}. \] Now substituting \(A\) into the first equation: \[ \frac{1}{4} + C = 1 \implies C = 1 - \frac{1}{4} = \frac{3}{4}. \] ### Step 5: Substitute back into the integral Now we have: \[ A = \frac{1}{4}, \quad B = \frac{1}{2}, \quad C = \frac{3}{4}. \] Thus, we can rewrite the integral as: \[ I = \int \left( \frac{1/4 \cdot x + 1/2}{x^2} + \frac{3/4}{x + 2} \right) \, dx. \] ### Step 6: Separate the integral This can be separated into three integrals: \[ I = \frac{1}{4} \int \frac{x}{x^2} \, dx + \frac{1}{2} \int \frac{1}{x^2} \, dx + \frac{3}{4} \int \frac{1}{x + 2} \, dx. \] ### Step 7: Evaluate each integral 1. \(\int \frac{x}{x^2} \, dx = \int \frac{1}{x} \, dx = \log |x|\) 2. \(\int \frac{1}{x^2} \, dx = -\frac{1}{x}\) 3. \(\int \frac{1}{x + 2} \, dx = \log |x + 2|\) ### Step 8: Combine the results Now substituting back, we get: \[ I = \frac{1}{4} \log |x| - \frac{1}{2} \cdot \frac{1}{x} + \frac{3}{4} \log |x + 2| + C, \] where \(C\) is the constant of integration. ### Final Result Thus, the final result of the integral is: \[ I = \frac{1}{4} \log |x| - \frac{1}{2x} + \frac{3}{4} \log |x + 2| + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate: int(x^2+x+1)/((x^2+1)(x+2))\ dx

Evaluate: int(x^2+x-1)/((x+1)^2(x+2))\ dx

Evaluate: int(x^2+x+1)/((x+1)^2(x+2))\ dx

Evaluate: int(x^2+x+1)/((x+1)^2(x+2))\ dx

Evaluate int(1-x^(2))/(1+x^(2))dx.

Evaluate: int(x^2+x+1)/(x^2-x)dx

Evaluate int(x^2-x+1)\dx

Evaluate: int(1-x+x^2)dx

Evaluate: int(x^2+1)/(x(x^2-1))dx