Home
Class 12
MATHS
Evaluate int (8dx)/((x+2)(x^(2)+4))...

Evaluate `int (8dx)/((x+2)(x^(2)+4))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{8 \, dx}{(x+2)(x^2+4)}, \] we will use the method of partial fractions. ### Step 1: Set up the partial fraction decomposition We can express the integrand as: \[ \frac{8}{(x+2)(x^2+4)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+4}. \] ### Step 2: Clear the denominators Multiplying through by the common denominator \((x+2)(x^2+4)\), we get: \[ 8 = A(x^2+4) + (Bx+C)(x+2). \] ### Step 3: Expand the right-hand side Expanding the right-hand side: \[ 8 = A(x^2 + 4) + Bx^2 + 2Bx + Cx + 2C. \] Combining like terms gives: \[ 8 = (A + B)x^2 + (2B + C)x + (4A + 2C). \] ### Step 4: Set up the system of equations Now, we can equate the coefficients from both sides: 1. \(A + B = 0\) (coefficient of \(x^2\)) 2. \(2B + C = 0\) (coefficient of \(x\)) 3. \(4A + 2C = 8\) (constant term) ### Step 5: Solve the system of equations From equation 1, we have: \[ B = -A. \] Substituting \(B = -A\) into equation 2: \[ 2(-A) + C = 0 \implies C = 2A. \] Now substituting \(B\) and \(C\) into equation 3: \[ 4A + 2(2A) = 8 \implies 4A + 4A = 8 \implies 8A = 8 \implies A = 1. \] Now substituting \(A = 1\) back to find \(B\) and \(C\): \[ B = -1, \quad C = 2. \] ### Step 6: Write the partial fractions Thus, we can rewrite the integral as: \[ \int \left( \frac{1}{x+2} + \frac{-x+2}{x^2+4} \right) dx. \] ### Step 7: Separate the integral This can be separated into two integrals: \[ \int \frac{1}{x+2} \, dx - \int \frac{x}{x^2+4} \, dx + 2\int \frac{1}{x^2+4} \, dx. \] ### Step 8: Evaluate each integral 1. The first integral: \[ \int \frac{1}{x+2} \, dx = \ln|x+2|. \] 2. The second integral can be solved using substitution. Let \(u = x^2 + 4\), then \(du = 2x \, dx\) or \(\frac{du}{2} = x \, dx\): \[ -\int \frac{x}{x^2+4} \, dx = -\frac{1}{2} \int \frac{1}{u} \, du = -\frac{1}{2} \ln|u| = -\frac{1}{2} \ln|x^2 + 4|. \] 3. The third integral: \[ 2\int \frac{1}{x^2+4} \, dx = 2 \cdot \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right) = \tan^{-1}\left(\frac{x}{2}\right). \] ### Step 9: Combine the results Combining all parts, we have: \[ \int \frac{8 \, dx}{(x+2)(x^2+4)} = \ln|x+2| - \frac{1}{2} \ln|x^2 + 4| + \tan^{-1}\left(\frac{x}{2}\right) + C. \] ### Final Answer Thus, the final answer is: \[ \ln|x+2| - \frac{1}{2} \ln|x^2 + 4| + \tan^{-1}\left(\frac{x}{2}\right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(dx)/(x^(2)(x^(4) + 1)^((3)/(4)))

Evaluate: int(18)/((x+2)(x^2+4))\ dx

Evaluate : int(dx)/(sqrt(5-4x-2x^2))

Evaluate int(dx)/(x-sqrt(x^(2)+2x+4)) .

Evaluate: int (x^(2))/(x^(2)-4) dx

Evaluate : int(dx)/(sqrt(5x+4x-x^(2)))

Evaluate: int8/((x+2)(x^2+4))\ dx

Evaluate: int(x^4\ dx)/((x-1)(x^2+1))

Evaluate: int(x^4\ dx)/((x-1)(x^2+1))

Evaluate: int(x^4\ dx)/((x-1)(x^2+1))