Home
Class 12
MATHS
Evaluate int sin 4x.e^(tan^(2)x)dx....

Evaluate `int sin 4x.e^(tan^(2)x)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sin(4x) e^{\tan^2 x} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Sine Function**: We can express \( \sin(4x) \) using the double angle formula: \[ \sin(4x) = \sin(2 \cdot 2x) = 2 \sin(2x) \cos(2x) \] Thus, we can rewrite the integral: \[ I = \int 2 \sin(2x) \cos(2x) e^{\tan^2 x} \, dx \] 2. **Substituting for Sine and Cosine**: Using the identities for sine and cosine in terms of tangent: \[ \sin(2x) = \frac{2 \tan x}{1 + \tan^2 x}, \quad \cos(2x) = \frac{1 - \tan^2 x}{1 + \tan^2 x} \] We substitute these into the integral: \[ I = 2 \int \left( \frac{2 \tan x}{1 + \tan^2 x} \right) \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) e^{\tan^2 x} \, dx \] 3. **Simplifying the Integral**: The integral simplifies to: \[ I = 2 \int \frac{2 \tan x (1 - \tan^2 x) e^{\tan^2 x}}{(1 + \tan^2 x)^2} \, dx \] 4. **Substitution**: Let \( t = \tan^2 x \). Then, differentiating gives: \[ dt = 2 \tan x \sec^2 x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2 \tan x \sec^2 x} \] Substituting this into the integral gives: \[ I = 2 \int \frac{2 \tan x (1 - t) e^t}{(1 + t)^2} \cdot \frac{dt}{2 \tan x \sec^2 x} \] This simplifies to: \[ I = \int \frac{(1 - t) e^t}{(1 + t)^2} \, dt \] 5. **Splitting the Integral**: We can split the integral: \[ I = \int \frac{e^t}{(1 + t)^2} \, dt - \int \frac{t e^t}{(1 + t)^2} \, dt \] 6. **Integration by Parts**: The second integral can be solved using integration by parts. Let: \[ u = \frac{1}{1 + t}, \quad dv = e^t \, dt \quad \Rightarrow \quad du = -\frac{1}{(1+t)^2} \, dt, \quad v = e^t \] Thus: \[ \int \frac{t e^t}{(1 + t)^2} \, dt = \frac{t e^t}{1+t} - \int \frac{e^t}{1+t} \, dt \] 7. **Final Expression**: After evaluating the integrals, we substitute back \( t = \tan^2 x \) to get the final result: \[ I = -2 e^{\tan^2 x} \cdot \frac{1}{\sec^2 x} + C = -2 e^{\tan^2 x} \cos^2 x + C \] ### Final Answer: \[ I = -2 e^{\tan^2 x} \cos^2 x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : intsin4x.e^(tan^(2)x)dx

Evaluate int x sin(4x^(2)+7 ) dx

Evaluate: int(sin(tan^(-1)x)/(1+x^2)dx )

Evaluate int tan ^(2) x sec^(4) x dx

Evaluate : int x " sin"^(2) " x dx "

Evaluate : int x " sin"^(2) " x dx "

Evaluate: (i) int(sin4x)/(sin2x)\ dx (ii) int(sin4x)/(cos2x)\ dx

Evaluate int(4)/(sin^(4)x+cos^(4)x)dx

Evaluate int\tan^2x\dx

Evaluate int(sin5x+ e^(5x))\dx