Home
Class 12
MATHS
For any natural number m, evaulate, in...

For any natural number m, evaulate,
`int(x^(3m)+x^(2m)+x^(m))(2x^(2m)+3x^9m)+6^(t//m)dx, x gt0`
`int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1)` dx is equal to:

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx, \] we will follow a step-by-step approach. ### Step 1: Simplify the Integral First, we can simplify the expression under the square root. Notice that: \[ 2x^4 - 2x^2 + 1 = 2(x^4 - x^2) + 1 = 2(x^2(x^2 - 1)) + 1. \] This doesn't simplify directly, so we will keep it as is for now. ### Step 2: Rewrite the Integral Now, we can rewrite the integral as: \[ \int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx = \int \frac{1 - \frac{1}{x^2}}{x \sqrt{2x^4 - 2x^2 + 1}} \, dx. \] ### Step 3: Split the Integral We can split the integral into two parts: \[ \int \frac{1}{x \sqrt{2x^4 - 2x^2 + 1}} \, dx - \int \frac{1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx. \] ### Step 4: Use Substitution Let's use the substitution \( u = 2x^4 - 2x^2 + 1 \). Then, we differentiate: \[ \frac{du}{dx} = 8x^3 - 4x = 4x(2x^2 - 1) \implies du = (4x(2x^2 - 1)) \, dx. \] Thus, \[ dx = \frac{du}{4x(2x^2 - 1)}. \] ### Step 5: Substitute in the Integral Now we can substitute \( u \) back into the integral. The first integral becomes: \[ \int \frac{1}{x \sqrt{u}} \cdot \frac{du}{4x(2x^2 - 1)}. \] ### Step 6: Evaluate the Integral Now we can evaluate the integral. The first integral simplifies to: \[ \frac{1}{4} \int \frac{1}{\sqrt{u}} \, du = \frac{1}{4} \cdot 2\sqrt{u} + C = \frac{\sqrt{u}}{2} + C. \] ### Step 7: Back Substitute Now we substitute back \( u = 2x^4 - 2x^2 + 1 \): \[ \frac{\sqrt{2x^4 - 2x^2 + 1}}{2} + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx = \frac{\sqrt{2x^4 - 2x^2 + 1}}{2} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(x^(3m)+x^(2m)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx

Evaluate: int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx

int(x^(7m)+x^(2m)+x^m)(2x^(6m)+7x^m+14)^(1/m)dx

For any natural number t,int(x^(3t)+x^(2t)+x^(t))(2x^(2t)+3x^(t)+6)^(1//t)dx is :

Evaluate: for m in N , intx^(3m)+x^(2n)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx ,x >0

Evaluate: for m in N , intx^(3m)+x^(2n)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx ,x >0

Evalutate : int (x ^(3) +3x ^(2)+x+9)/((x ^(2) +1) (x ^(2) +3))dx.

int (x^6+2x^2+3x+1) dx

int(x+1)/(sqrt(2x^(2)+x-3))dx

Evaluate: int (e^(m sin^(-1)x))/(sqrt(1-x^2))dx