Home
Class 12
MATHS
int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))...

`int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx` is equal to

A

(a)`1/2 ln (1+sqrt(1+x^(2)))+C`

B

(b) `2sqrt(1+sqrt(1+x^(2)))+C`

C

(c) `2(1+sqrt(1+x^(2)))+C`

D

(d) None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x}{\sqrt{1+x^2+\sqrt{(1+x^2)^3}}} \, dx \), we will follow a systematic approach: ### Step 1: Substitution Let \( t^2 = 1 + x^2 \). Then, differentiating both sides gives: \[ 2t \, dt = 2x \, dx \implies dt = \frac{x}{t} \, dx \implies x \, dx = t \, dt \] Now we can rewrite the integral in terms of \( t \). ### Step 2: Rewrite the Integral Substituting \( x \, dx \) and \( 1 + x^2 \): \[ I = \int \frac{t \, dt}{\sqrt{t^2 + \sqrt{(t^2)^3}}} \] Since \( (1+x^2)^3 = (t^2)^3 = t^6 \), we have: \[ I = \int \frac{t \, dt}{\sqrt{t^2 + t^3}} = \int \frac{t \, dt}{\sqrt{t^2(1+t)}} = \int \frac{t \, dt}{t \sqrt{1+t}} = \int \frac{dt}{\sqrt{1+t}} \] ### Step 3: Further Substitution Now, let \( v = 1 + t \). Then, \( dt = dv \), and we can rewrite the integral: \[ I = \int \frac{dv}{\sqrt{v}} \] ### Step 4: Integrate The integral \( \int v^{-1/2} \, dv \) can be computed as follows: \[ I = 2v^{1/2} + C = 2\sqrt{v} + C \] ### Step 5: Back Substitute Now substitute back for \( v \): \[ v = 1 + t \implies I = 2\sqrt{1+t} + C \] And since \( t = \sqrt{1+x^2} \): \[ I = 2\sqrt{1+\sqrt{1+x^2}} + C \] ### Final Answer Thus, the value of the integral is: \[ I = 2\sqrt{1+\sqrt{1+x^2}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

The value of int_(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx is equal to ___________.

int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to