Home
Class 12
MATHS
int (x^(2)(1-"ln"x))/(("ln"^(4)x-x^(4))d...

`int (x^(2)(1-"ln"x))/(("ln"^(4)x-x^(4))dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x^2(1 - \ln x)}{\ln^4 x - x^4} \, dx, \] we will follow these steps: ### Step 1: Simplify the Denominator We can rewrite the denominator \(\ln^4 x - x^4\) by factoring out \(x^4\): \[ \ln^4 x - x^4 = x^4 \left(\frac{\ln^4 x}{x^4} - 1\right). \] ### Step 2: Rewrite the Integral Now, substituting this back into the integral, we get: \[ I = \int \frac{x^2(1 - \ln x)}{x^4 \left(\frac{\ln^4 x}{x^4} - 1\right)} \, dx = \int \frac{(1 - \ln x)}{x^2 \left(\frac{\ln^4 x}{x^4} - 1\right)} \, dx. \] ### Step 3: Substitute \(t = \frac{\ln x}{x}\) Let’s make the substitution \(t = \frac{\ln x}{x}\). Then, we differentiate: \[ dt = \left(\frac{1 - \ln x}{x^2}\right) dx \implies dx = \frac{x^2}{1 - \ln x} dt. \] ### Step 4: Substitute in the Integral Now, substituting \(t\) and \(dx\) into the integral: \[ I = \int \frac{1}{t^4 - 1} dt. \] ### Step 5: Factor the Denominator We can factor \(t^4 - 1\) as: \[ t^4 - 1 = (t^2 - 1)(t^2 + 1) = (t - 1)(t + 1)(t^2 + 1). \] ### Step 6: Partial Fraction Decomposition Now we can perform partial fraction decomposition: \[ \frac{1}{(t - 1)(t + 1)(t^2 + 1)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{Ct + D}{t^2 + 1}. \] ### Step 7: Solve for Coefficients Multiplying through by the denominator and equating coefficients will yield values for \(A\), \(B\), \(C\), and \(D\). ### Step 8: Integrate Each Term Now we can integrate each term separately. The integrals will be: - For \(\frac{A}{t - 1}\), it will yield \(A \ln |t - 1|\). - For \(\frac{B}{t + 1}\), it will yield \(B \ln |t + 1|\). - For \(\frac{Ct + D}{t^2 + 1}\), it will yield \(C \tan^{-1}(t) + D \ln(t^2 + 1)\). ### Step 9: Substitute Back Finally, substitute back \(t = \frac{\ln x}{x}\) into the integrated result to express everything in terms of \(x\). ### Final Result After performing all the integrations and substitutions, we will arrive at the final expression for the integral \(I\). ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int_(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to

The integral int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx is equal to

int (f'(x))/( f(x) log(f(x)))dx is equal to

int(log(x+1)-logx)/(x(x+1))dx is equal to :

The value of the definite integral int e^(-x^4) (2+ln(x+sqrt(x^2+1))+5x^3-8x^4)dx is equal to

int_(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

int x ^(x)((ln x )^(2) +lnx+1/x) dx is equal to:

int ln(1+x)^(1+x)dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c