Home
Class 12
MATHS
Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge...

Let `f(x)=(x)/((1+x^(n))^(1//n))` for `n ge 2` and `g(x)=underset("n times")underbrace(fofo ..."of"(x))`, then `int x^(n-2)g(x)dx` equals to

A

`(1)/(n(n-1))(1+nx^(n))^(1-1/n)+C`

B

`(1)/(n-1)(1+nx^(n))^(1-1/n)+C`

C

`(1)/(n(n+1))(1+nx^(n))^(1+1/n)+C`

D

`(1)/(n+1)(1+nx^(n))^(1+1/n)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral \( \int x^{n-2} g(x) \, dx \), where \( g(x) = f(f(...f(x)...)) \) (n times) and \( f(x) = \frac{x}{(1 + x^n)^{1/n}} \). ### Step-by-Step Solution: 1. **Define the Function \( f(x) \)**: \[ f(x) = \frac{x}{(1 + x^n)^{1/n}} \] 2. **Calculate \( f(f(x)) \)**: To find \( g(x) \), we need to compute \( f(f(x)) \): \[ f(f(x)) = f\left(\frac{x}{(1 + x^n)^{1/n}}\right) \] Substitute \( f(x) \) into itself: \[ f(f(x)) = \frac{\frac{x}{(1 + x^n)^{1/n}}}{\left(1 + \left(\frac{x}{(1 + x^n)^{1/n}}\right)^n\right)^{1/n}} \] Simplifying the denominator: \[ = \frac{x}{(1 + x^n)^{1/n}} \cdot \left(1 + \frac{x^n}{(1 + x^n)}\right)^{1/n} = \frac{x}{(1 + x^n)^{1/n}} \cdot \left(\frac{1 + 2x^n}{1 + x^n}\right)^{1/n} \] Continuing this process, we find: \[ g(x) = f(f(...f(x)...)) = \frac{x}{(1 + nx^n)^{1/n}} \] 3. **Set Up the Integral**: Now we need to evaluate: \[ I = \int x^{n-2} g(x) \, dx = \int x^{n-2} \frac{x}{(1 + nx^n)^{1/n}} \, dx = \int \frac{x^{n-1}}{(1 + nx^n)^{1/n}} \, dx \] 4. **Substitution**: Let \( t = x^n \), then \( dt = n x^{n-1} \, dx \) or \( dx = \frac{dt}{n x^{n-1}} = \frac{dt}{n t^{(n-1)/n}} \). Substitute into the integral: \[ I = \int \frac{t^{(n-1)/n}}{(1 + nt)^{1/n}} \cdot \frac{dt}{n t^{(n-1)/n}} = \frac{1}{n} \int \frac{1}{(1 + nt)^{1/n}} \, dt \] 5. **Evaluate the Integral**: The integral \( \int \frac{1}{(1 + nt)^{1/n}} \, dt \) can be evaluated using the formula for integrals of the form \( \int (a + bx)^{-k} \, dx \): \[ = \frac{(1 + nt)^{1/n - 1}}{(1/n - 1)n} + C \] Thus, \[ I = \frac{1}{n} \cdot \frac{(1 + nt)^{1/n - 1}}{(1/n - 1)n} + C \] 6. **Back Substitute**: Replace \( t \) back with \( x^n \): \[ I = \frac{1}{n^2} (1 + nx^n)^{1/n - 1} + C \] ### Final Answer: \[ I = \frac{1}{n^2} (1 + nx^n)^{1/n - 1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int (2x^(n-1))/(x^n+3) dx

If n in N , then int_(-n)^(n)(-1)^([x]) dx equals

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

If n in N , then int_(0)^(n) (x-[x])dx is equal to

int(dx)/(x(x^n+1)) is equal to

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

The value of int(dx)/(x^n(1+x^n)^(1/ n)) is equal to

Let f _(1)(x) =e ^(x) and f _(n+1) (x) =e ^(f _(n)(x))) for any n ge 1, n in N. Then for any fixed n, the vlaue of (d)/(dx) f )(n)(x) equals:

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =