Home
Class 12
MATHS
int 5/(1+x^4)dx...

`int 5/(1+x^4)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{5}{1 + x^4} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{5}{1 + x^4} \, dx \] ### Step 2: Factor the Denominator Notice that \( 1 + x^4 \) can be factored as: \[ 1 + x^4 = (1 + x^2)^2 - (x^2)^2 = (1 + x^2 - x)(1 + x^2 + x) \] However, for simplicity, we will not factor it directly but will use a substitution later. ### Step 3: Use a Substitution Let’s use the substitution \( x^2 = t \), hence \( dx = \frac{1}{2\sqrt{t}} \, dt \). The integral becomes: \[ I = \int \frac{5}{1 + t^2} \cdot \frac{1}{2\sqrt{t}} \, dt \] ### Step 4: Simplify the Integral Now we can rewrite the integral: \[ I = \frac{5}{2} \int \frac{1}{1 + t^2} \cdot \frac{1}{\sqrt{t}} \, dt \] ### Step 5: Break Down the Integral We can split the integral into two parts: \[ I = \frac{5}{2} \left( \int \frac{1}{1 + t^2} \, dt - \int \frac{t}{1 + t^2} \, dt \right) \] ### Step 6: Solve Each Integral 1. The first integral: \[ \int \frac{1}{1 + t^2} \, dt = \tan^{-1}(t) + C \] 2. The second integral can be solved using substitution \( u = 1 + t^2 \): \[ \int \frac{t}{1 + t^2} \, dt = \frac{1}{2} \ln |1 + t^2| + C \] ### Step 7: Combine the Results Putting it all together, we get: \[ I = \frac{5}{2} \left( \tan^{-1}(t) - \frac{1}{2} \ln |1 + t^2| \right) + C \] ### Step 8: Substitute Back Now substituting back \( t = x^2 \): \[ I = \frac{5}{2} \left( \tan^{-1}(x^2) - \frac{1}{2} \ln |1 + x^4| \right) + C \] ### Final Result Thus, the final result of the integral is: \[ I = \frac{5}{2} \tan^{-1}(x^2) - \frac{5}{4} \ln |1 + x^4| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int (1+x)^4 dx

int \ x/(x^4-1)dx

Evaluate: int1/(x^4+1)dx

Evaluate: int1/(x^4-1)dx

Evaluate: int1/(x^4+1)dx

Evaluate : int (x)/(1+x^(4)) "dx "

int(x^2)/(1-x^4)dx

Evaluate : int (x)/(1+x^(4)) "dx "

Evaluate each of the following integrals: (i) intx^4\ dx (ii) intx^(5//4)\ dx (iii) int1/(x^5)\ dx (iv) int1/(x^(3//2))\ dx

Find the following integrals. 1. int 3x^(7)dx 2. int 4 sqrt(x)dx 3. int(dx)/(sqrt(x)) 4. int(x^(3)-5x^(2)+7x-11)dx 5. int 3 xdx 6. int 5x^(2)dx 7. int(1)/(2)x^(3)dx