Home
Class 12
MATHS
int1/(x^4+5x^2+1)dx...

`int1/(x^4+5x^2+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{x^4 + 5x^2 + 1} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{x^4 + 5x^2 + 1} \, dx \] Next, we divide the numerator and denominator by \( x^2 \): \[ I = \int \frac{1/x^2}{x^2 + 5 + 1/x^2} \, dx \] ### Step 2: Substitute and Simplify Let \( u = x^2 \), then \( du = 2x \, dx \) or \( dx = \frac{du}{2\sqrt{u}} \). The integral becomes: \[ I = \int \frac{1}{u^2 + 5u + 1} \cdot \frac{du}{2\sqrt{u}} \] ### Step 3: Complete the Square in the Denominator We complete the square for the quadratic \( u^2 + 5u + 1 \): \[ u^2 + 5u + 1 = (u + \frac{5}{2})^2 - \frac{25}{4} + 1 = (u + \frac{5}{2})^2 - \frac{21}{4} \] ### Step 4: Rewrite the Integral Now we rewrite the integral: \[ I = \int \frac{1}{(u + \frac{5}{2})^2 - \frac{21}{4}} \cdot \frac{du}{2\sqrt{u}} \] ### Step 5: Use Trigonometric Substitution Let \( v = u + \frac{5}{2} \), then \( du = dv \) and the integral becomes: \[ I = \int \frac{1}{v^2 - \frac{21}{4}} \cdot \frac{dv}{2\sqrt{v - \frac{5}{2}}} \] ### Step 6: Solve the Integral Using the standard integral formula: \[ \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] we can evaluate the integral. ### Step 7: Back Substitute Finally, we substitute back \( v \) and \( u \) to express the integral in terms of \( x \). ### Final Result The final result will involve the arctangent function and will look something like: \[ I = \frac{1}{2\sqrt{7}} \tan^{-1} \left( \frac{x^2 - 1}{\sqrt{7}} \right) - \frac{1}{2\sqrt{3}} \tan^{-1} \left( \frac{x^2 + 1}{\sqrt{3}} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int1/(x^4+3x^2+9)dx

Evaluate: int1/(x^4+x^2+1)\ dx

Evaluate: int1/(x^4+3x^2+1)\ dx

int(2x^4+5)/(x^2+1)dx

int_1^4 3x^2dx

Evaluate: int1/(x^4+1)dx

Evaluate: int1/(x^4-1)dx

Evaluate: int1/(x^4+1)dx

Evaluate: int1/(1-x-4x^2)\ dx

int1/(x^2-4x+8)dx