Home
Class 12
MATHS
Evaluate int (1)/((x+1)sqrt(x-2))dx....

Evaluate `int (1)/((x+1)sqrt(x-2))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{1}{(x+1)\sqrt{x-2}} \, dx\), we will use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let us make the substitution: \[ x - 2 = t^2 \] Then, differentiating both sides, we get: \[ dx = 2t \, dt \] Also, we can express \(x\) in terms of \(t\): \[ x = t^2 + 2 \] ### Step 2: Rewrite the Integral Substituting \(x\) and \(dx\) into the integral, we have: \[ \int \frac{1}{(t^2 + 2 + 1)\sqrt{t^2}} \cdot 2t \, dt \] This simplifies to: \[ \int \frac{2t}{(t^2 + 3)t} \, dt \] The \(t\) in the numerator and denominator cancels out: \[ \int \frac{2}{t^2 + 3} \, dt \] ### Step 3: Factor Out the Constant We can factor out the constant 2: \[ 2 \int \frac{1}{t^2 + 3} \, dt \] ### Step 4: Use the Standard Integral Formula The integral \(\int \frac{1}{x^2 + a^2} \, dx\) is given by: \[ \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] In our case, \(a^2 = 3\) so \(a = \sqrt{3}\). Thus, we have: \[ 2 \cdot \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{t}{\sqrt{3}} \right) + C \] ### Step 5: Substitute Back Now we substitute back \(t = \sqrt{x - 2}\): \[ \frac{2}{\sqrt{3}} \tan^{-1} \left( \frac{\sqrt{x - 2}}{\sqrt{3}} \right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{(x+1)\sqrt{x-2}} \, dx = \frac{2}{\sqrt{3}} \tan^{-1} \left( \frac{\sqrt{x - 2}}{\sqrt{3}} \right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x+1)/((x-1)sqrt(x+2))dx

Evaluate: int(x+1)/((x-1)sqrt(x+2))dx

Evaluate: int(x+1)/((x-1)sqrt(x+2))\ dx

Evaluate: int1/((x+1)sqrt(x^2-1))\ dx

Evaluate: int1/((x+1)sqrt(x^2-1))\ dx

Evaluate: int1/((x-1)sqrt(x^2+4))\ dx

Evaluate: int1/((x+1)sqrt(x^2+x+1))dx

Evaluate: int1/((x-1)sqrt(x+2))\ dx

Evaluate: int1/((x+1)sqrt(x^2-1))dx

Evaluate: int1/((x+1)sqrt(x^2-1))dx