Home
Class 12
MATHS
Evaluate: int((x-1)sqrt(x^4+2x^3-x^2+2x+...

Evaluate: `int((x-1)sqrt(x^4+2x^3-x^2+2x+1))/(x^2(x+1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{(x-1) \sqrt{x^4 + 2x^3 - x^2 + 2x + 1}}{x^2(x+1)} \, dx, \] we will follow a series of steps to simplify and solve the integral. ### Step 1: Simplify the expression under the square root First, we notice that the expression under the square root can be factored or simplified. We will rewrite the polynomial: \[ x^4 + 2x^3 - x^2 + 2x + 1. \] We can try to factor it or complete the square. After some manipulation, we find that: \[ x^4 + 2x^3 - x^2 + 2x + 1 = (x^2 + x + 1)^2. \] ### Step 2: Substitute the simplified expression Now we can substitute this back into our integral: \[ I = \int \frac{(x-1)(x^2 + x + 1)}{x^2(x+1)} \, dx. \] ### Step 3: Expand the numerator Next, we expand the numerator: \[ (x-1)(x^2 + x + 1) = x^3 + x^2 + x - x^2 - x - 1 = x^3 - 1. \] So, we can rewrite the integral as: \[ I = \int \frac{x^3 - 1}{x^2(x+1)} \, dx. \] ### Step 4: Split the fraction We can split the fraction: \[ I = \int \left( \frac{x^3}{x^2(x+1)} - \frac{1}{x^2(x+1)} \right) \, dx = \int \left( \frac{x}{x+1} - \frac{1}{x^2(x+1)} \right) \, dx. \] ### Step 5: Simplify the first term The first term can be simplified further: \[ \frac{x}{x+1} = 1 - \frac{1}{x+1}. \] Thus, the integral becomes: \[ I = \int \left( 1 - \frac{1}{x+1} - \frac{1}{x^2(x+1)} \right) \, dx. \] ### Step 6: Integrate term by term Now we can integrate each term separately: 1. \(\int 1 \, dx = x\) 2. \(\int -\frac{1}{x+1} \, dx = -\ln|x+1|\) 3. For \(\int -\frac{1}{x^2(x+1)} \, dx\), we can use partial fractions: \[ -\frac{1}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}. \] Solving for \(A\), \(B\), and \(C\) gives us: \[ -1 = A x(x+1) + B(x+1) + Cx^2. \] Setting \(x = 0\) gives \(B = -1\). Setting \(x = -1\) gives \(A = 0\). Setting \(x = 1\) gives \(C = 1\). Thus: \[ -\frac{1}{x^2(x+1)} = -\frac{1}{x^2} + \frac{1}{x+1}. \] Therefore, we have: \[ I = x - \ln|x+1| + \int \left(-\frac{1}{x^2} + \frac{1}{x+1}\right) \, dx. \] ### Step 7: Final integration Now we can integrate: 1. \(\int -\frac{1}{x^2} \, dx = \frac{1}{x}\) 2. \(\int \frac{1}{x+1} \, dx = \ln|x+1|\) Putting it all together: \[ I = x - \ln|x+1| - \frac{1}{x} + \ln|x+1| + C. \] The \(-\ln|x+1|\) and \(+\ln|x+1|\) cancel out: \[ I = x - \frac{1}{x} + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{(x-1) \sqrt{x^4 + 2x^3 - x^2 + 2x + 1}}{x^2(x+1)} \, dx = x - \frac{1}{x} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x-1)sqrt (x^2-2x)dx

Evaluate: int(x+1)sqrt(2x^2+3)dx

Evaluate: int(x+1)sqrt(2x^2+3)dx

Evaluate: int1/((x-1)sqrt(2x+3))\ dx

Evaluate: int(2x)/sqrt (1-x^4)dx

Evaluate: int1/((x-1)sqrt(x^2+4))\ dx

Evaluate: int(3x+1)\ sqrt(4-3x-2x^2)\ dx

Evaluate: int(x-1)sqrt(1+x+x^(2)) dx

Evaluate: int(2x+1)/(x^4+2x^3+x^2-1)dx

Evaluate: int(2x+1)/(x^4+2x^3+x^2-1)dx