Home
Class 12
MATHS
Evaluate int (dx)/((x-3)^(3)sqrt(x^(2)-...

Evaluate `int (dx)/((x-3)^(3)sqrt(x^(2)-6x+10))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{(x-3)^3 \sqrt{x^2 - 6x + 10}}, \] we will follow these steps: ### Step 1: Simplify the square root First, we simplify the expression under the square root: \[ x^2 - 6x + 10 = (x^2 - 6x + 9) + 1 = (x - 3)^2 + 1. \] Thus, we can rewrite the integral as: \[ I = \int \frac{dx}{(x-3)^3 \sqrt{(x-3)^2 + 1}}. \] ### Step 2: Substitution Let \( t = x - 3 \), which implies \( dx = dt \). The integral becomes: \[ I = \int \frac{dt}{t^3 \sqrt{t^2 + 1}}. \] ### Step 3: Rewrite the integral Now we can express the integral in a more manageable form: \[ I = \int \frac{dt}{t^3 \sqrt{t^2 + 1}}. \] ### Step 4: Further substitution We can use the substitution \( u = \sqrt{t^2 + 1} \). Then, we have: \[ u^2 = t^2 + 1 \implies t^2 = u^2 - 1 \implies t = \sqrt{u^2 - 1}. \] Differentiating gives: \[ dt = \frac{u}{\sqrt{u^2 - 1}} du. \] ### Step 5: Change the variable in the integral Substituting \( t \) and \( dt \) into the integral: \[ I = \int \frac{\frac{u}{\sqrt{u^2 - 1}} du}{(\sqrt{u^2 - 1})^3 u} = \int \frac{du}{(u^2 - 1)^{3/2}}. \] ### Step 6: Integrate The integral can now be solved using the standard integral: \[ \int \frac{du}{(u^2 - 1)^{3/2}} = -\frac{1}{\sqrt{u^2 - 1}} + C. \] ### Step 7: Back substitution Now we substitute back \( u = \sqrt{(x - 3)^2 + 1} \): \[ I = -\frac{1}{\sqrt{(x - 3)^2 + 1}} + C. \] ### Final Answer Thus, the evaluated integral is: \[ I = -\frac{1}{\sqrt{(x - 3)^2 + 1}} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(x dx)/(x^(3)sqrt(x^(2)-1)).

Evaluate: int(dx)/(x^3sqrt(x^2-1))

Evaluate int(dx)/((x^3+3x^2+3x+1)sqrt(x^2+2x-3))

Evaluate: int1/(x^(3)sqrt(x^2-1))\ dx

Evaluate: int ( dx)/( sqrt(x+1) +""^(3) sqrt(x+1))

Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

Evaluate int(x+1)/(sqrt(2x+3))dx

Evaluate int(x^(2)dx)/(sqrt(4+x^(6)))

Evaluate: int1/((x-1)sqrt(2x+3))\ dx

int((x-3)^2)/(sqrt(x))dx