Home
Class 12
MATHS
Evaluate int x^(1//3)(2+x^(1//2))^(2)dx...

Evaluate `int x^(1//3)(2+x^(1//2))^(2)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int x^{1/3} (2 + x^{1/2})^2 \, dx \), we will follow these steps: ### Step 1: Expand the integrand First, we expand the expression \( (2 + x^{1/2})^2 \): \[ (2 + x^{1/2})^2 = 2^2 + 2 \cdot 2 \cdot x^{1/2} + (x^{1/2})^2 = 4 + 4x^{1/2} + x \] Thus, we can rewrite the integral as: \[ I = \int x^{1/3} (4 + 4x^{1/2} + x) \, dx \] ### Step 2: Distribute \( x^{1/3} \) Now, we distribute \( x^{1/3} \) across the expanded terms: \[ I = \int (4x^{1/3} + 4x^{1/3} \cdot x^{1/2} + x^{1/3} \cdot x) \, dx \] This simplifies to: \[ I = \int (4x^{1/3} + 4x^{(1/3 + 1/2)} + x^{(1/3 + 1)}) \, dx \] Calculating the exponents: \[ 1/3 + 1/2 = 5/6 \quad \text{and} \quad 1/3 + 1 = 4/3 \] So the integral becomes: \[ I = \int (4x^{1/3} + 4x^{5/6} + x^{4/3}) \, dx \] ### Step 3: Integrate each term Now we can integrate each term separately: 1. For \( 4x^{1/3} \): \[ \int 4x^{1/3} \, dx = 4 \cdot \frac{x^{1/3 + 1}}{1/3 + 1} = 4 \cdot \frac{x^{4/3}}{4/3} = 3x^{4/3} \] 2. For \( 4x^{5/6} \): \[ \int 4x^{5/6} \, dx = 4 \cdot \frac{x^{5/6 + 1}}{5/6 + 1} = 4 \cdot \frac{x^{11/6}}{11/6} = \frac{24}{11} x^{11/6} \] 3. For \( x^{4/3} \): \[ \int x^{4/3} \, dx = \frac{x^{4/3 + 1}}{4/3 + 1} = \frac{x^{7/3}}{7/3} = \frac{3}{7} x^{7/3} \] ### Step 4: Combine the results Now we combine all the integrated terms: \[ I = 3x^{4/3} + \frac{24}{11} x^{11/6} + \frac{3}{7} x^{7/3} + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result for the integral is: \[ I = 3x^{4/3} + \frac{24}{11} x^{11/6} + \frac{3}{7} x^{7/3} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(x^(1//2)+x^(1//3))\ dx

Evaluate: int1/(x^(1//2)+x^(1//3))\ dx

Evaluate : int(3x^2+1)dx

Evaluate int _(1)^(3) x^2 dx

Evaluate: int(dx)/(x^(1/2)+x^(1/3))

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx

Evaluate: int(x^(1/2))/(1+x^(3/4))dx

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate inte^(x)((1-x)/(1+x^(2)))^(2)dx .