Home
Class 12
MATHS
Evaluate int x^(-2//3)(1+x^(2//3))^(-1)...

Evaluate `int x^(-2//3)(1+x^(2//3))^(-1)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int x^{-\frac{2}{3}} (1 + x^{\frac{2}{3}})^{-1} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = x^{\frac{1}{3}} \). Then, we differentiate both sides to find \( dx \): \[ \frac{dt}{dx} = \frac{1}{3} x^{-\frac{2}{3}} \implies dx = 3t^2 \, dt \] ### Step 2: Express \( x \) in terms of \( t \) From our substitution, we have: \[ x = t^3 \quad \text{and thus} \quad x^{\frac{2}{3}} = t^2 \] ### Step 3: Substitute in the integral Now we can substitute \( x \) and \( dx \) in the integral: \[ I = \int (t^3)^{-\frac{2}{3}} (1 + (t^3)^{\frac{2}{3}})^{-1} (3t^2 \, dt) \] This simplifies to: \[ I = \int t^{-2} (1 + t^2)^{-1} (3t^2 \, dt) \] ### Step 4: Simplify the integral The expression simplifies further: \[ I = 3 \int \frac{t^2}{t^2(1 + t^2)} \, dt = 3 \int \frac{1}{1 + t^2} \, dt \] ### Step 5: Integrate We know that: \[ \int \frac{1}{1 + t^2} \, dt = \tan^{-1}(t) + C \] Thus, we have: \[ I = 3 \tan^{-1}(t) + C \] ### Step 6: Back substitute for \( t \) Now substituting back \( t = x^{\frac{1}{3}} \): \[ I = 3 \tan^{-1}(x^{\frac{1}{3}}) + C \] ### Final Answer The evaluated integral is: \[ \int x^{-\frac{2}{3}} (1 + x^{\frac{2}{3}})^{-1} \, dx = 3 \tan^{-1}(x^{\frac{1}{3}}) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int x^(-2//3)(1+x^(1//3))^(1//2)dx .

Evaluate: int(dx)/(x^(2/3)(1+x^(2/3)))

Evaluate: int(dx)/(x^(2/3)(1+x^(2/3)))

Evaluate : int(3x^2+1)dx

Evaluate: int(x^(1/2))/(1+x^(3/4))dx

int3x^(1//2)(1+x^(3//2))dx

Evaluate: int1/(x^(1//2)+x^(1//3))\ dx

Evaluate: int1/(x^(1//2)+x^(1//3))\ dx

Evaluate int _(1)^(3) x^2 dx

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx