Home
Class 12
MATHS
Evaluate int x^(-2//3)(1+x^(1//3))^(1//...

Evaluate `int x^(-2//3)(1+x^(1//3))^(1//2)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int x^{-\frac{2}{3}} (1 + x^{\frac{1}{3}})^{\frac{1}{2}} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t^2 = 1 + x^{\frac{1}{3}} \). ### Step 2: Differentiate both sides Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(t^2) = 2t \frac{dt}{dx} \quad \text{and} \quad \frac{d}{dx}(1 + x^{\frac{1}{3}}) = \frac{1}{3} x^{-\frac{2}{3}} \] Thus, we have: \[ 2t \frac{dt}{dx} = \frac{1}{3} x^{-\frac{2}{3}} \] ### Step 3: Solve for \( dx \) Rearranging gives: \[ dx = \frac{6t}{x^{-\frac{2}{3}}} dt \] ### Step 4: Express \( x^{-\frac{2}{3}} \) in terms of \( t \) From our substitution \( t^2 = 1 + x^{\frac{1}{3}} \), we can express \( x^{\frac{1}{3}} \) as: \[ x^{\frac{1}{3}} = t^2 - 1 \quad \Rightarrow \quad x = (t^2 - 1)^3 \] Thus, \[ x^{-\frac{2}{3}} = \frac{1}{(t^2 - 1)^2} \] ### Step 5: Substitute back into the integral Now substituting back into the integral: \[ \int x^{-\frac{2}{3}} (1 + x^{\frac{1}{3}})^{\frac{1}{2}} \, dx = \int \frac{1}{(t^2 - 1)^2} t \cdot \frac{6t}{x^{-\frac{2}{3}}} dt \] This simplifies to: \[ 6 \int t^2 dt \] ### Step 6: Integrate Now we integrate: \[ 6 \int t^2 dt = 6 \cdot \frac{t^3}{3} + C = 2t^3 + C \] ### Step 7: Substitute back for \( t \) Finally, substituting back for \( t \): \[ t = \sqrt{1 + x^{\frac{1}{3}}} \] Thus, we have: \[ 2 \left( \sqrt{1 + x^{\frac{1}{3}}} \right)^3 + C = 2(1 + x^{\frac{1}{3}})^{\frac{3}{2}} + C \] ### Final Answer The evaluated integral is: \[ \int x^{-\frac{2}{3}} (1 + x^{\frac{1}{3}})^{\frac{1}{2}} \, dx = 2(1 + x^{\frac{1}{3}})^{\frac{3}{2}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int x^(-2//3)(1+x^(2//3))^(-1)dx .

Evaluate: int(dx)/(x^(2/3)(1+x^(2/3)))

Evaluate: int(dx)/(x^(2/3)(1+x^(2/3)))

Evaluate int(x^(1/2)/(x^(1//2)-x^(1//3)))dx

Evaluate: int1/(x^(1//2)+x^(1//3))\ dx

Evaluate: int1/(x^(1//2)+x^(1//3))\ dx

Evaluate : int(3x^2+1)dx

Evaluate: int(dx)/(x^(1/2)+x^(1/3))

Evaluate: int(x^(1/2))/(1+x^(3/4))dx

int3x^(1//2)(1+x^(3//2))dx