Home
Class 12
MATHS
If I=int x^(-11) (1+x^4)^(-1//2) \ dx...

If `I=int x^(-11) (1+x^4)^(-1//2) \ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x^{-11} (1 + x^4)^{-1/2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int x^{-11} (1 + x^4)^{-1/2} \, dx \] We can rewrite \( x^{-11} \) as \( \frac{1}{x^{11}} \) and \( (1 + x^4)^{-1/2} \) remains as is. ### Step 2: Change of Variables Next, we can simplify the expression by making a substitution. Let: \[ t = 1 + x^4 \] Then, differentiating both sides gives: \[ dt = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x^3} \] ### Step 3: Express \( x \) in Terms of \( t \) From our substitution, we can express \( x^4 \) in terms of \( t \): \[ x^4 = t - 1 \quad \Rightarrow \quad x = (t - 1)^{1/4} \] Thus, \[ x^3 = (t - 1)^{3/4} \] ### Step 4: Substitute into the Integral Now we substitute \( dx \) and \( x^3 \) into the integral: \[ I = \int \frac{1}{(t - 1)^{11/4}} (t)^{-1/2} \cdot \frac{dt}{4(t - 1)^{3/4}} \] This simplifies to: \[ I = \frac{1}{4} \int t^{-1/2} (t - 1)^{-11/4} \, dt \] ### Step 5: Simplify the Integral Now we can simplify the integral: \[ I = \frac{1}{4} \int t^{-1/2} (t - 1)^{-11/4} \, dt \] ### Step 6: Use the Beta Function This integral can be evaluated using the Beta function or by recognizing it as a standard form. The integral can be expressed as: \[ I = \frac{1}{4} B\left(\frac{1}{2}, \frac{1}{4}\right) \] where \( B(x,y) \) is the Beta function. ### Step 7: Final Result The result of the Beta function can be computed, but for the purposes of this solution, we can leave it in terms of the Beta function: \[ I = \frac{1}{4} B\left(\frac{1}{2}, \frac{1}{4}\right) + C \] where \( C \) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(x^2)/(1-x^4)dx

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

int (4x^(2) +x+1)/(x^(3) -1) dx=?

If I=int_(0)^(1) (dx)/(1+x^(4)) , then

int (1)/((x+1)^(2)-4)dx

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

int \ (2xtan^(- 1)x^2)/(1+x^4)dx

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)=underset(0)overset(oo)int x^(2)(dx)/(1+x^(4))"then"n (I_(1))/(I_(2))=

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx