Home
Class 12
MATHS
int (dx)/(root3(x)+root4(x))...

`int (dx)/(root3(x)+root4(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{\sqrt[3]{x} + \sqrt[4]{x}}\), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral in terms of exponents: \[ I = \int \frac{dx}{x^{1/3} + x^{1/4}} \] ### Step 2: Factor out the lower power Next, we notice that the lower power between \(x^{1/3}\) and \(x^{1/4}\) is \(x^{1/4}\). We can factor \(x^{1/4}\) out of the denominator: \[ I = \int \frac{dx}{x^{1/4} \left(x^{1/3 - 1/4} + 1\right)} = \int \frac{dx}{x^{1/4} \left(x^{1/12} + 1\right)} \] ### Step 3: Substitute for simplification Let \(t = x^{1/12} + 1\). Then, we differentiate both sides to find \(dx\): \[ dt = \frac{1}{12} x^{-11/12} dx \quad \Rightarrow \quad dx = 12 x^{11/12} dt \] Now, we express \(x^{11/12}\) in terms of \(t\): \[ x^{11/12} = (t - 1)^{11/12} \] Substituting \(dx\) into the integral: \[ I = \int \frac{12 (t - 1)^{11/12} dt}{(t - 1)^{3/4} (t)} = 12 \int \frac{(t - 1)^{2/3}}{t} dt \] ### Step 4: Expand and simplify the integral Now we can expand the integrand: \[ I = 12 \int \left( (t - 1)^{2/3} \cdot \frac{1}{t} \right) dt \] This can be computed using polynomial long division or binomial expansion. ### Step 5: Integrate term by term Using the binomial expansion, we can express \((t - 1)^{2/3}\) and integrate term by term: \[ I = 12 \left[ \int t^{5/3} dt - \int t^{2/3} dt \right] \] ### Step 6: Solve the integrals Now we compute each integral: \[ \int t^{5/3} dt = \frac{t^{8/3}}{8/3} = \frac{3}{8} t^{8/3} \] \[ \int t^{2/3} dt = \frac{t^{5/3}}{5/3} = \frac{3}{5} t^{5/3} \] Putting it all together: \[ I = 12 \left( \frac{3}{8} t^{8/3} - \frac{3}{5} t^{5/3} \right) + C \] ### Step 7: Substitute back for \(t\) Finally, we substitute back \(t = x^{1/12} + 1\): \[ I = 12 \left( \frac{3}{8} (x^{1/12} + 1)^{8/3} - \frac{3}{5} (x^{1/12} + 1)^{5/3} \right) + C \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{9}{2} (x^{1/12} + 1)^{8/3} - \frac{36}{5} (x^{1/12} + 1)^{5/3} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If int (dx)/(sqrt(x)+root(3)x)=asqrt(x) + b(root(3)x)+c(root(6)x)+d In being an arbitary constant then the value of 20a + b+ c+d is

The value of f(0) such that the function f(x)=(root3(1+2x)-root4(1+x))/(x) is continuous at x = 0, is

int(root(3)(x^2)-root(4)(x))/(sqrt(x))dx

Evaluate of each of the following integrals (1-15): int_0^5(root(3)(x+4)dx)/(root(3)(x+4) +root(3)(9-x)

(root3(x)*root6(x))/(root4(x^3)*root9(x^6))

int (x)^(1/3) (root(7)(1+root(3)(x^(4))))dx is equal to

int(1)/(root(3)(x^2))dx

int(px)/root(3)(qx+r)dx

intdx/root(3)((x+1)^2(x-1)^4)

intdx/root(3)((x+1)^2(x-1)^4)