Home
Class 12
MATHS
Evaluate l(n)= int (dx)/((x^(2)+a^(2))^...

Evaluate ` l_(n)= int (dx)/((x^(2)+a^(2))^(n))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I_n = \int \frac{dx}{(x^2 + a^2)^n} \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral**: \[ I_n = \int \frac{dx}{(x^2 + a^2)^n} \] 2. **Multiply and Divide by \( a^2 \)**: \[ I_n = \frac{1}{a^2} \int \frac{a^2}{(x^2 + a^2)^n} \, dx \] 3. **Add and Subtract \( x^2 \)**: \[ I_n = \frac{1}{a^2} \left( \int \frac{x^2 + a^2}{(x^2 + a^2)^n} \, dx - \int \frac{x^2}{(x^2 + a^2)^n} \, dx \right) \] 4. **Separate the Integrals**: \[ I_n = \frac{1}{a^2} \left( \int \frac{dx}{(x^2 + a^2)^{n-1}} - \int \frac{x^2 \, dx}{(x^2 + a^2)^n} \right) \] 5. **Substitute for the Second Integral**: For the second integral, we can use the substitution \( t = x^2 + a^2 \), which gives \( dt = 2x \, dx \) or \( dx = \frac{dt}{2x} \). Thus, we have: \[ \int \frac{x^2 \, dx}{(x^2 + a^2)^n} = \int \frac{x^2}{t^n} \cdot \frac{dt}{2x} = \frac{1}{2} \int \frac{x}{t^n} \, dt \] 6. **Evaluate the Integral**: The integral can be evaluated using integration techniques, but we will focus on the recursive relationship. We can express \( I_n \) in terms of \( I_{n-1} \): \[ I_n = \frac{1}{a^2} \left( I_{n-1} - \frac{1}{2(n-1)} \cdot \frac{1}{(x^2 + a^2)^{n-1}} \right) \] 7. **Establish the Recursive Formula**: After simplifying, we can derive a recursive formula: \[ I_{n+1} = \frac{2n - 1}{2n} \cdot \frac{1}{a^2} I_n + \frac{x}{2n} \cdot \frac{1}{(x^2 + a^2)^{n}} \] ### Final Result: Thus, we have established a recursive relationship for \( I_n \): \[ I_{n+1} = \frac{2n - 1}{2n a^2} I_n + \frac{x}{2n a^2 (x^2 + a^2)^{n}} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(xsqrt(x^(2n)-a^(2n)))

If n gt 1 . Evaluate int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

Evaluate: int (x^n + 1) dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Deduce the reduction formula for I_(n)=int(dx)/(1+x^(4))^(n) and Hence evaluate I_(2)=int(x)/(1+x^(4))^(2) .

Evaluate: int(x+1/x)^(n+5)((x^2-1)/x^2)dx

Evaluate : intx^(2n-1)sin(x^(n))dx

inte^(x) .(a+be^(x))^(n) dx

Connect int x^(m-1)(a+bx^(n))^(p)dx with int x^(m-n-1)(a+bx^(n))^(p)dx and evaluate int(x^(8)dx)/((1-x^(3))^(1//3)) .

Given that int (dx)/((1+ x ^(2))^n)=(x)/(2 (n-1)(1+x^(2) )^(n-1))+((2n -3))/(2(n-1))int (dx)/((1+ x ^(2))^(n-1)). Find the vlaue of int _(0)^(1) (dx)/((1+x ^(2) )^(4)), (you may or may not use reduction formula given)