Home
Class 12
MATHS
Derive reduction formula for l((n","m...

Derive reduction formula for
`l_((n","m))=int (sin^(n)x)/(cos^(m)x)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To derive the reduction formula for \( I(n, m) = \int \frac{\sin^n x}{\cos^m x} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral**: We start with the integral: \[ I(n, m) = \int \frac{\sin^n x}{\cos^m x} \, dx \] We can express \(\sin^n x\) as \(\sin^{n-1} x \cdot \sin x\): \[ I(n, m) = \int \frac{\sin^{n-1} x \cdot \sin x}{\cos^m x} \, dx \] 2. **Integration by Parts**: We will use integration by parts. Let: - \( u = \sin^{n-1} x \) - \( dv = \frac{\sin x}{\cos^m x} \, dx \) Then, we need to find \( du \) and \( v \): - \( du = (n-1) \sin^{n-2} x \cos x \, dx \) - To find \( v \), we can integrate \( dv \): \[ v = \int \frac{\sin x}{\cos^m x} \, dx \] 3. **Applying Integration by Parts**: Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] We have: \[ I(n, m) = \sin^{n-1} x \cdot v - \int v \cdot du \] 4. **Evaluate \( v \)**: The integral \( v = \int \frac{\sin x}{\cos^m x} \, dx \) can be evaluated using substitution. Let \( u = \cos x \), then \( du = -\sin x \, dx \): \[ v = -\int \frac{1}{u^m} \, du = -\frac{u^{-m+1}}{-m+1} = \frac{\cos^{1-m} x}{1-m} \] 5. **Substituting Back**: Now substituting \( v \) back into our integration by parts result: \[ I(n, m) = \sin^{n-1} x \cdot \frac{\cos^{1-m} x}{1-m} - \int \frac{\cos^{1-m} x}{1-m} \cdot (n-1) \sin^{n-2} x \cos x \, dx \] This gives: \[ I(n, m) = \frac{\sin^{n-1} x \cos^{1-m} x}{1-m} - \frac{(n-1)}{1-m} I(n-2, m) \] 6. **Final Reduction Formula**: Rearranging gives us the reduction formula: \[ I(n, m) = \frac{\sin^{n-1} x \cos^{1-m} x}{1-m} - \frac{(n-1)}{1-m} I(n-2, m) \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int3sqrt((sin^n x)/(cos^(n+6) x))dx

Deduce the reduction formula for I_(n)=int(dx)/(1+x^(4))^(n) and Hence evaluate I_(2)=int(x)/(1+x^(4))^(2) .

int(x sin x+cos x)/(x cos x)dx

Differentiate sin^(m)x*cos^(n)x

Evaluate : int{(sin^(n)x)/(cos^(n+6)x)}^((1)/(3))dx .

int sin x cos(cos x)dx

int(sin x+x cos x)/(x sin x)dx

For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0

Let I_(m","n)= int sin^(n)x cos^(m)x dx . Then , we can relate I_(n ","m) with each of the following : (i) I_(n-2","m) " " (ii) I_(n+2","m) (iii) I_(n","m-2) " " (iv) I_(n","m+2) (v) I_(n-2","m+2)" " I_(n+2","m-2) Suppose we want to establish a relation between I_(n","m) and I_(n","m-2) , then we get P(x)=sin^(n+1)x cos^(m-1)x ...(i) In I_(n","m) and I_(n","m-2) the exponent of cos x in m and m-2 respectively, the minimum of the two is m - 2, adding 1 to the minimum we get m-2+1=m-1 . Now, choose the exponent of sin x for m - 1 of cos x in P(x). Similarly, choose the exponent of sin x for P(x)=(nH)sin^(n)x cos^(m)x-(m-1)sin^(n+2) x cos^(m-2)x . Now, differentiating both the sides of Eq. (i), we get =(n+1)sin^(n)x cos^(m)x-(m-1)sin^(n)x(1-cos^(2)x)cos^(m-2)x =(n+1)sin^(n)x cos^(m)x-(m-1)sin^(n)x cos^(m-2)x+(m-1)sin^(n)x cos^(n)x =(n+m)sin^(n)x cos^(m)x-(m-1)sin^(n)x cos^(m-2)x Now, integrating both the sides, we get sin^(n+1)x cos^(m-1)x=(n+m)I_(n","m)-(m-1)I_(n","m-2) Similarly, we can establish the other relations. The relation between I_(4","2) and I_(2","2) is