Home
Class 12
MATHS
Evaluate int (dx)/((5+4cos x)^(2))....

Evaluate `int (dx)/((5+4cos x)^(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{(5 + 4 \cos x)^2} \] we can use a substitution method and some trigonometric identities. Here’s a step-by-step solution: ### Step 1: Use the substitution Let \( t = \tan\left(\frac{x}{2}\right) \). Then, using the Weierstrass substitution, we have: \[ \cos x = \frac{1 - t^2}{1 + t^2} \] and \[ dx = \frac{2}{1 + t^2} dt. \] ### Step 2: Substitute into the integral Substituting these into the integral, we get: \[ I = \int \frac{2}{(5 + 4 \cdot \frac{1 - t^2}{1 + t^2})^2} \cdot \frac{1}{1 + t^2} dt. \] ### Step 3: Simplify the expression Now simplify the expression inside the integral: \[ 5 + 4 \cdot \frac{1 - t^2}{1 + t^2} = 5 + \frac{4(1 - t^2)}{1 + t^2} = \frac{5(1 + t^2) + 4(1 - t^2)}{1 + t^2} = \frac{(5 + 4) + (5 - 4)t^2}{1 + t^2} = \frac{9 - t^2}{1 + t^2}. \] Thus, \[ (5 + 4 \cos x)^2 = \left(\frac{9 - t^2}{1 + t^2}\right)^2 = \frac{(9 - t^2)^2}{(1 + t^2)^2}. \] ### Step 4: Substitute back into the integral Now substituting this back into the integral, we have: \[ I = \int \frac{2(1 + t^2)}{(9 - t^2)^2} dt. \] ### Step 5: Split the integral This can be split into two parts: \[ I = 2 \int \frac{1}{(9 - t^2)^2} dt + 2 \int \frac{t^2}{(9 - t^2)^2} dt. \] ### Step 6: Evaluate the first integral The first integral can be solved using the formula: \[ \int \frac{1}{(a^2 - x^2)^2} dx = \frac{x}{2a^2(a^2 - x^2)} + \frac{1}{2a^4} \tan^{-1}\left(\frac{x}{a}\right) + C. \] Here, \( a = 3 \), so: \[ \int \frac{1}{(9 - t^2)^2} dt = \frac{t}{18(9 - t^2)} + \frac{1}{18} \tan^{-1}\left(\frac{t}{3}\right) + C. \] ### Step 7: Evaluate the second integral The second integral can be simplified using the substitution \( u = 9 - t^2 \): \[ \int \frac{t^2}{(9 - t^2)^2} dt = -\frac{1}{9} \int \frac{du}{u^2} = \frac{1}{9u} + C = \frac{1}{9(9 - t^2)} + C. \] ### Step 8: Combine results Now combine the results of both integrals to find \( I \): \[ I = 2\left[\frac{t}{18(9 - t^2)} + \frac{1}{18} \tan^{-1}\left(\frac{t}{3}\right) + \frac{1}{9(9 - t^2)}\right]. \] ### Step 9: Substitute back for \( t \) Finally, substitute back \( t = \tan\left(\frac{x}{2}\right) \) to express \( I \) in terms of \( x \): \[ I = \frac{1}{9(9 - \tan^2\left(\frac{x}{2}\right))} + \frac{1}{9(9 - \tan^2\left(\frac{x}{2}\right))} + \frac{1}{9} \tan^{-1}\left(\frac{\tan\left(\frac{x}{2}\right)}{3}\right). \] ### Final Result Thus, the evaluated integral is: \[ I = \frac{2}{9(9 - \tan^2\left(\frac{x}{2}\right))} + \frac{1}{9} \tan^{-1}\left(\frac{\tan\left(\frac{x}{2}\right)}{3}\right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int (1)/(5+4 cos x)dx

int(1)/(5+4 cos x)dx

Evaluate : int(dx)/(sqrt(5-4x-2x^2))

int(1)/(5+2 cos x)dx

Evaluate : int(dx)/(sqrt(5x+4x-x^(2)))

Evaluate : int ("sinx ")/("cos"^(2) x) " dx "

Evaluate: int(sinx)/(cos2x)\ dx

Evaluate: int(sin^5x)/(cos^4x)dx

Evaluate: int(dx)/(x^2(1+x^5)^(4/5))

Evaluate: int(dx)/(x^2(1+x^5)^(4/5))