Home
Class 12
MATHS
Evaluate: int(e^tan^((-1)x))/((1+x^2))[(...

Evaluate: `int(e^tan^((-1)x))/((1+x^2))[((sec^(-1)sqrt(1+x^2))^2+cos^(-1)((1-x^2)/(1+x^2))]dx(x >0)dot`

A

`e^(tan^(-1)x)*tan^(-1)x+C`

B

`(e^(tan^(-1)x)*(tan^(-1)x)^(2))/(2)+C`

C

`e^(tan^(-1)x)*(sec^(-1)(sqrt(1+x^(2))))^(2)+C`

D

`e^(tan^(-1)x)*(cosec^(-1)(sqrt(1+x^(2))))^(2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{e^{\tan^{-1} x}}{1+x^2} \left[ \left( \sec^{-1} \sqrt{1+x^2} \right)^2 + \cos^{-1} \left( \frac{1-x^2}{1+x^2} \right) \right] dx \] we can simplify the expression inside the integral using known identities. ### Step 1: Simplify the expression Using the identities: - \(\sec^{-1} \sqrt{1+x^2} = \tan^{-1} x\) - \(\cos^{-1} \left( \frac{1-x^2}{1+x^2} \right) = 2 \tan^{-1} x\) we can rewrite the integral as: \[ I = \int \frac{e^{\tan^{-1} x}}{1+x^2} \left[ \left( \tan^{-1} x \right)^2 + 2 \tan^{-1} x \right] dx \] ### Step 2: Substitute \(t = \tan^{-1} x\) Let \(t = \tan^{-1} x\). Then, we have: \[ x = \tan t \quad \text{and} \quad dx = \sec^2 t \, dt = (1 + \tan^2 t) \, dt = (1 + x^2) \, dt \] Thus, the integral becomes: \[ I = \int e^t (t^2 + 2t) dt \] ### Step 3: Apply integration by parts (Eilat's Rule) Using Eilat's rule, we will integrate \(e^t (t^2 + 2t)\): 1. Let \(u = t^2 + 2t\) and \(dv = e^t dt\). 2. Then, \(du = (2t + 2) dt\) and \(v = e^t\). Using integration by parts: \[ I = e^t (t^2 + 2t) - \int e^t (2t + 2) dt \] ### Step 4: Repeat integration by parts Now, we need to evaluate the integral \(\int e^t (2t + 2) dt\). We apply integration by parts again: 1. Let \(u = 2t + 2\) and \(dv = e^t dt\). 2. Then, \(du = 2 dt\) and \(v = e^t\). Thus, \[ \int e^t (2t + 2) dt = e^t (2t + 2) - \int 2 e^t dt \] ### Step 5: Evaluate the remaining integral The remaining integral \(\int 2 e^t dt\) is straightforward: \[ \int 2 e^t dt = 2 e^t \] ### Step 6: Combine results Putting everything together, we have: \[ I = e^t (t^2 + 2t) - \left( e^t (2t + 2) - 2 e^t \right) \] Simplifying this gives: \[ I = e^t (t^2 + 2t) - e^t (2t + 2) + 2 e^t \] This simplifies to: \[ I = e^t (t^2 + 2t - 2t - 2 + 2) = e^t t^2 \] ### Step 7: Substitute back to original variable Substituting back \(t = \tan^{-1} x\): \[ I = e^{\tan^{-1} x} \left( \tan^{-1} x \right)^2 + C \] ### Final Result Thus, the final answer is: \[ \int \frac{e^{\tan^{-1} x}}{1+x^2} \left[ \left( \sec^{-1} \sqrt{1+x^2} \right)^2 + \cos^{-1} \left( \frac{1-x^2}{1+x^2} \right) \right] dx = e^{\tan^{-1} x} \left( \tan^{-1} x \right)^2 + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(tan^(-1)x))/((1+x^2))[(sec^(-1)sqrt(1+x^2)+cos^(-1)((1-x^2)/(1+x^2))]dx,(x >0)dot

Evaluate: int(e^tan^(-1)(x))/(1+x^2)\ dx

Evaluate: int(tan^-1x)^2/(1+x^2)dx

Evaluate: int_0^(1)x(dx)/(sqrt(1-x^(2)))

Evaluate: int(sqrt(1+x^2))/(1-x^2)dx

Evaluate: int(sqrt(1+x^2))/(1-x^2)dx

Evaluate: int_0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)sqrt(1-x^2))dx

Evaluate: int_0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)sqrt(1-x^2))dx

Evaluate: int_(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx