Home
Class 12
MATHS
Integral of sqrt(1+2cotx(cot x + cosec x...

Integral of `sqrt(1+2cotx(cot x + cosec x))` w.r.t. x, is

A

`2 ln cos . (x)/(2) +C`

B

`2 ln sin. (x)/(2)+C`

C

`1/2 ln cos . (x)/(2)+C`

D

`ln sin x - ln (cosec x- cot x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + 2 \cot x (\cot x + \csc x)} \, dx \), we can follow these steps: ### Step 1: Simplify the Expression Inside the Square Root We start with the expression inside the square root: \[ 1 + 2 \cot x (\cot x + \csc x) \] Expanding this gives: \[ 1 + 2 \cot^2 x + 2 \cot x \csc x \] ### Step 2: Use the Identity Recall the identity: \[ \csc^2 x - \cot^2 x = 1 \] We can rearrange this to express \( \csc^2 x \): \[ \csc^2 x = 1 + \cot^2 x \] Substituting this into our expression, we have: \[ 1 + 2 \cot^2 x + 2 \cot x \csc x = \csc^2 x + \cot^2 x + 2 \cot x \csc x \] ### Step 3: Factor the Expression Notice that: \[ \csc^2 x + 2 \cot x \csc x + \cot^2 x = (\csc x + \cot x)^2 \] Thus, we can rewrite our integral as: \[ \int \sqrt{(\csc x + \cot x)^2} \, dx \] ### Step 4: Simplify the Integral Since the square root and the square cancel each other out, we have: \[ \int |\csc x + \cot x| \, dx \] For \( x \) in the domain where \( \csc x + \cot x \) is positive, we can drop the absolute value: \[ \int (\csc x + \cot x) \, dx \] ### Step 5: Integrate The integral of \( \csc x + \cot x \) is a standard result: \[ \int (\csc x + \cot x) \, dx = -\csc x + C \] ### Final Answer Thus, the integral is: \[ -\csc x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : intsqrt(1+2cotx("cosec"x+cotx))dx

If secx=sqrt(2) and x does not lie in the 1^(st) quadrant, find the value of (1+tanx+" cosec "x)/(1+cot x-" cosec "x) .

Integrate the following w.r.t x (sin x - cos x)^(2)

int cosec^(2)x. sqrt(cot) dx

The derivative of sin^(-1)((x)/(sqrt(1+x^(2)))) w.r.t .x is

Solve cot(x//2)-cosec (x//2)=cot x .

int ( x + cotx ) cot^2x dx

Integrate the following w.r.t x 1/x log x

Integrate the following w.r.t x sin x cos^(4) x