Home
Class 12
MATHS
Let f(x)=x+ sin x . Suppose g denotes th...

Let `f(x)=x+ sin x` . Suppose g denotes the inverse function of f. The value of `g'(pi/4+1/sqrt2)` has the value equal to

A

`sqrt(2)-1`

B

`(sqrt(2)+1)/(sqrt(2))`

C

`2-sqrt(2)`

D

`sqrt(2)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( g'(\frac{\pi}{4} + \frac{1}{\sqrt{2}}) \) where \( g \) is the inverse function of \( f(x) = x + \sin x \), we will use the formula for the derivative of the inverse function. ### Step-by-Step Solution: 1. **Understand the relationship between \( f \) and \( g \)**: Since \( g \) is the inverse of \( f \), we have: \[ g(f(x)) = x \] Differentiating both sides with respect to \( x \): \[ g'(f(x)) \cdot f'(x) = 1 \] This implies: \[ g'(f(x)) = \frac{1}{f'(x)} \] 2. **Find \( f'(x) \)**: The function \( f(x) = x + \sin x \) can be differentiated: \[ f'(x) = 1 + \cos x \] 3. **Set up the equation for \( g' \)**: We need to find \( g'(\frac{\pi}{4} + \frac{1}{\sqrt{2}}) \). Let: \[ y = \frac{\pi}{4} + \frac{1}{\sqrt{2}} \] Then, we need to find \( x \) such that: \[ f(x) = y \] This means: \[ x + \sin x = \frac{\pi}{4} + \frac{1}{\sqrt{2}} \] 4. **Find \( x \)**: We can try \( x = \frac{\pi}{4} \): \[ f\left(\frac{\pi}{4}\right) = \frac{\pi}{4} + \sin\left(\frac{\pi}{4}\right) = \frac{\pi}{4} + \frac{1}{\sqrt{2}} \] This confirms that \( x = \frac{\pi}{4} \) is the correct value. 5. **Calculate \( g'(\frac{\pi}{4} + \frac{1}{\sqrt{2}}) \)**: Now we can substitute \( x = \frac{\pi}{4} \) into the formula for \( g' \): \[ g'\left(\frac{\pi}{4} + \frac{1}{\sqrt{2}}\right) = \frac{1}{f'\left(\frac{\pi}{4}\right)} \] 6. **Evaluate \( f'\left(\frac{\pi}{4}\right) \)**: \[ f'\left(\frac{\pi}{4}\right) = 1 + \cos\left(\frac{\pi}{4}\right) = 1 + \frac{1}{\sqrt{2}} \] 7. **Final calculation**: Therefore, \[ g'\left(\frac{\pi}{4} + \frac{1}{\sqrt{2}}\right) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \] To simplify: \[ = \frac{1}{\frac{\sqrt{2} + 1}{\sqrt{2}}} = \frac{\sqrt{2}}{\sqrt{2} + 1} \] ### Final Answer: \[ g'\left(\frac{\pi}{4} + \frac{1}{\sqrt{2}}\right) = \frac{\sqrt{2}}{\sqrt{2} + 1} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Consider a function f(x)=x^(x), AA x in [1, oo) . If g(x) is the inverse function of f(x) , then the value of g'(4) is equal to

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(0) is

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(2)=a then g'(2) is equal to

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to

Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer function, Then (gof)' (pi//2) is

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)