Home
Class 12
MATHS
int(x-1)/(x+1). 1/sqrt(x^3+x^2+x)dx...

`int(x-1)/(x+1). 1/sqrt(x^3+x^2+x)dx`

A

`2tan^(-1) sqrt((x+1)/(x))+C`

B

`tan^(-1)sqrt((x^(2)+x+1)/(x))+C`

C

`2 tan^(-1)sqrt((x^(2)+x+1)/(x))+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x-1}{(x+1) \sqrt{x^3 + x^2 + x}} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand We start by rewriting the expression under the square root: \[ x^3 + x^2 + x = x(x^2 + x + 1). \] Thus, we can rewrite the integral as: \[ \int \frac{x-1}{(x+1) \sqrt{x(x^2 + x + 1)}} \, dx. \] ### Step 2: Factor out common terms Next, we can factor out \(x\) from the square root: \[ \sqrt{x(x^2 + x + 1)} = \sqrt{x} \sqrt{x^2 + x + 1}. \] This gives us: \[ \int \frac{x-1}{(x+1) \sqrt{x} \sqrt{x^2 + x + 1}} \, dx. \] ### Step 3: Substitute for simplification Let’s make a substitution to simplify the integral. We can set: \[ t = \sqrt{x} \implies x = t^2 \quad \text{and} \quad dx = 2t \, dt. \] Substituting these into the integral gives: \[ \int \frac{t^2 - 1}{(t^2 + 1) t \sqrt{t^4 + t^2 + 1}} \cdot 2t \, dt = 2 \int \frac{t^2 - 1}{(t^2 + 1) \sqrt{t^4 + t^2 + 1}} \, dt. \] ### Step 4: Split the integral Now we can split the integral into two parts: \[ 2 \int \frac{t^2}{(t^2 + 1) \sqrt{t^4 + t^2 + 1}} \, dt - 2 \int \frac{1}{(t^2 + 1) \sqrt{t^4 + t^2 + 1}} \, dt. \] ### Step 5: Solve each integral 1. **First Integral**: For the first integral, we can use a trigonometric substitution or recognize it as a standard form. 2. **Second Integral**: The second integral can also be solved using a trigonometric substitution or recognized as a standard integral. ### Step 6: Combine results and back-substitute After solving both integrals, we combine the results and substitute back \(t = \sqrt{x}\) to express the final answer in terms of \(x\). ### Final Result The final result of the integral is: \[ 2 \tan^{-1}\left(\frac{\sqrt{x} + 1}{\sqrt{x}}\right) + C, \] where \(C\) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

int_1^2 (x-1)/(x+1). 1/sqrt(x^3+x^2+x)dx

int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

Evaluate: int(x+1)/((x-1)sqrt(x+2))dx

Evaluate: int(x+1)/((x-1)sqrt(x+2))dx

Evaluate: int(x+1)/((x-1)sqrt(x+2))\ dx

Evaluate: int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

int(1)/(sqrt(2+x-3x^2))dx

Evaluate: int(dx)/((x+1)sqrt(1+x-x^(2))