Home
Class 12
MATHS
The value of I=int(dx)/(2xsqrt(1-x)sqrt(...

The value of `I=int(dx)/(2xsqrt(1-x)sqrt((2-x)+sqrt(1-x)))=-1/2{log(z+3/2+sqrt(z^(2)+3z+3))}+1/2|log s-1/2+sqrt(s^(2)-s+1)|+C` and `s-z=k/x`, then value of k, is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) in the given integral equation, we will follow the steps outlined in the video transcript to derive the solution systematically. ### Step 1: Set up the integral We start with the integral given in the question: \[ I = \int \frac{dx}{2x \sqrt{1-x} \sqrt{(2-x) + \sqrt{1-x}}} \] ### Step 2: Substitute We will use the substitution \( 1 - x = t^2 \). Thus, \( dx = -2t \, dt \). This transforms our integral: \[ I = -\int \frac{2t \, dt}{2 \sqrt{1-t^2} \sqrt{(2 - (1 - t^2)) + t}} = -\int \frac{t \, dt}{\sqrt{1 - t^2} \sqrt{(1 + t^2) + t}} \] ### Step 3: Simplify the integral Now we simplify the expression inside the integral. The integral becomes: \[ I = -\int \frac{dt}{\sqrt{1 - t^2} \sqrt{1 + t^2 + t}} \] ### Step 4: Partial fraction decomposition Next, we will break the integral into partial fractions. We can express the integrand as: \[ \frac{1}{(1 + t)(1 - \sqrt{t^2 + t - 1})} \] ### Step 5: Rewrite the integral We can rewrite the integral \( I \) as: \[ I = \frac{1}{2} I_1 - \frac{1}{2} I_2 \] Where \( I_1 \) and \( I_2 \) are the integrals we need to evaluate. ### Step 6: Evaluate \( I_1 \) For \( I_1 \): \[ I_1 = \int \frac{dt}{t - 1} + \int \frac{dt}{t + 1 \sqrt{t^2 + t + 1}} \] Using the substitution \( t - 1 = \frac{1}{z} \) for the first integral, we can evaluate it. ### Step 7: Evaluate \( I_2 \) For \( I_2 \): Using the substitution \( t + 1 = \frac{1}{s} \), we can evaluate this integral similarly. ### Step 8: Combine results After evaluating both integrals, we will have: \[ I = -\frac{1}{2} \left( \log(z + \frac{3}{2} + \sqrt{z^2 + 3z + 3}) - \log(s - \frac{1}{2} + \sqrt{s^2 - s + 1}) \right) + C \] ### Step 9: Relate \( s \) and \( z \) Given \( s - z = \frac{k}{x} \), we can express \( s \) in terms of \( z \): \[ s = z + \frac{k}{x} \] ### Step 10: Compare coefficients By comparing the coefficients from the integrals and the transformations, we find that: \[ \frac{2}{x} = \frac{k}{x} \] ### Step 11: Solve for \( k \) Thus, we conclude that: \[ k = 2 \] ### Final Answer The value of \( k \) is \( \boxed{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

int x(ln(x+sqrt(1+x^2))/sqrt(1+x^2)dx

The value of ("lim")_(xvec2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x^2))+bx+c then

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

The value of int_(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

If int x/sqrt(1+x^2+sqrt((1+x^2)^3)dx = ksqrt(1+sqrt(1+x^2))+c . find k

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2 , then the locus of z is