Home
Class 12
MATHS
If int (dx)/((x^(2)+a^(2))^(3))=(x)/(4a^...

If `int (dx)/((x^(2)+a^(2))^(3))=(x)/(4a^(2)(x^(2)+a^(2)))+(m)/(na^(2)){(x)/(2a^(2)(x^(2)+a^(2)))+(1)/(2a^(3))tan^(-1)(x/a)}+C,` then `|m-n|` is equal to

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral and find the values of \( m \) and \( n \), we start with the integral: \[ \int \frac{dx}{(x^2 + a^2)^3} \] ### Step 1: Use the substitution Let \( x = a \tan \theta \). Then, we have: \[ dx = a \sec^2 \theta \, d\theta \] Substituting \( x \) and \( dx \) into the integral, we get: \[ \int \frac{a \sec^2 \theta \, d\theta}{(a^2 \tan^2 \theta + a^2)^3} \] ### Step 2: Simplify the integral The expression \( a^2 \tan^2 \theta + a^2 \) can be factored out: \[ = a^2 (\tan^2 \theta + 1) = a^2 \sec^2 \theta \] Thus, the integral becomes: \[ \int \frac{a \sec^2 \theta \, d\theta}{(a^2 \sec^2 \theta)^3} = \int \frac{a \sec^2 \theta \, d\theta}{a^6 \sec^6 \theta} = \frac{1}{a^5} \int \cos^4 \theta \, d\theta \] ### Step 3: Use the identity for \( \cos^4 \theta \) Using the identity \( \cos^4 \theta = \left(\frac{1 + \cos 2\theta}{2}\right)^2 \): \[ \cos^4 \theta = \frac{1 + 2\cos 2\theta + \cos^2 2\theta}{4} = \frac{1 + 2\cos 2\theta + \frac{1 + \cos 4\theta}{2}}{4} \] This simplifies to: \[ \cos^4 \theta = \frac{3 + 4\cos 2\theta + \cos 4\theta}{8} \] ### Step 4: Integrate \( \cos^4 \theta \) Now we can integrate: \[ \int \cos^4 \theta \, d\theta = \frac{1}{8} \int (3 + 4\cos 2\theta + \cos 4\theta) \, d\theta = \frac{3\theta}{8} + 2\sin 2\theta + \frac{\sin 4\theta}{32} + C \] ### Step 5: Substitute back to \( x \) Now we substitute back \( \theta = \tan^{-1} \left(\frac{x}{a}\right) \): \[ = \frac{3}{8} \tan^{-1} \left(\frac{x}{a}\right) + 2\sin \left(2 \tan^{-1} \left(\frac{x}{a}\right)\right) + \frac{\sin \left(4 \tan^{-1} \left(\frac{x}{a}\right)\right)}{32} + C \] ### Step 6: Compare with the given expression The expression we have is: \[ \frac{x}{4a^2(x^2 + a^2)} + \frac{m}{na^2} \left(\frac{x}{2a^2(x^2 + a^2)}\right) + \frac{1}{2a^3} \tan^{-1} \left(\frac{x}{a}\right) + C \] From the integration, we can compare the coefficients of \( \tan^{-1} \left(\frac{x}{a}\right) \) and find: - The coefficient of \( \tan^{-1} \left(\frac{x}{a}\right) \) gives us \( \frac{3}{8} = \frac{1}{2a^3} \) leading to \( m = 3 \) and \( n = 4 \). ### Step 7: Calculate \( |m - n| \) Thus, we find: \[ |m - n| = |3 - 4| = 1 \] ### Final Answer The value of \( |m - n| \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int((1)/(5+4x^(2))+a^(3x+2))dx

int (x+1)/(2x^2+3x+4) dx

int(3x+1)/(2x^(2)+x-1)dx

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

(1) int(2x+3)/((x-1)(x-2))dx

(1) int(2x+3)/((x-1)(x-2))dx

int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to

If int(dx)/((x^(2)+1)^(2))=(A)/(148)tan^(-1)x+(1)/(2)(x)/(x^(2)+1)+C then A equals.......

int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2) , then (a,b) is