Home
Class 12
MATHS
If y(x-y)^2=x, then int1/(x-3y)dx is eq...

If `y(x-y)^2=x`, then `int1/(x-3y)dx` is equal to (A) `1/3log{(x-y)^2+1}` (B) `1/4log{(x-y)^2-1}` (C) `1/2log{(x-y)^2-1}` (D) `1/6 log{(x^2-y^2-1}`

A

1

B

3

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y(x - y)^2 = x \) and we need to find \( \int \frac{1}{x - 3y} \, dx \), we can follow these steps: ### Step 1: Differentiate the given equation We start with the equation: \[ y(x - y)^2 = x \] Differentiating both sides with respect to \( x \) using the product rule: \[ \frac{d}{dx}[y(x - y)^2] = \frac{d}{dx}[x] \] Applying the product rule: \[ y \cdot 2(x - y)(1 - \frac{dy}{dx}) + (x - y)^2 \frac{dy}{dx} = 1 \] ### Step 2: Rearranging the differentiated equation Rearranging the equation gives: \[ y \cdot 2(x - y)(1 - y') + (x - y)^2 y' = 1 \] Where \( y' = \frac{dy}{dx} \). ### Step 3: Collect terms involving \( y' \) Factor out \( y' \): \[ y'[(x - y)^2 + 2y(x - y)] = 1 - 2y(x - y) \] Thus, \[ y' = \frac{1 - 2y(x - y)}{(x - y)^2 + 2y(x - y)} \] ### Step 4: Find \( x - 3y \) From the differentiated equation, we can express \( x - 3y \) in terms of \( y \): \[ x - 3y = (x - y) - 2y \] ### Step 5: Rewrite the integral We need to find: \[ \int \frac{1}{x - 3y} \, dx \] Using the expression for \( x - 3y \): \[ \int \frac{1}{(x - y) - 2y} \, dx \] ### Step 6: Substitute and integrate Let \( t = (x - y)^2 - 1 \), then: \[ dt = 2(x - y) \, dx \] Thus, \[ dx = \frac{dt}{2(x - y)} \] Substituting into the integral: \[ \int \frac{1}{x - 3y} \, dx = \int \frac{1}{(x - y) - 2y} \cdot \frac{dt}{2(x - y)} \] ### Step 7: Solve the integral This leads to: \[ \frac{1}{2} \int \frac{1}{t} \, dt = \frac{1}{2} \log |t| + C \] Substituting back for \( t \): \[ = \frac{1}{2} \log |(x - y)^2 - 1| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{1}{x - 3y} \, dx = \frac{1}{2} \log |(x - y)^2 - 1| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If log(x-y)-log5-1/2logx-1/2logy=0 then x/y+y/x is equal to

int(x dx)/((x-1)(x-2) equal(A) log|((x-1)^2)/(x-2)|+C (B) log|((x-2)^2)/(x-1)|+C (C) log|((x-1)^2)/(x-2)|+C (D) log|(x-1)(x-2)|+C

If sin(x+y)=log(x+y) , then (dy)/(dx)= (a) 2 (b) -2 (c) 1 (d) -1

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If y=(sin^(-1)x)^2,\ then (1-x^2)y_2 is equal to x y_1+2 (b) x y_1-2 (c) x y_1+2 (d) none of these

y=2^(1/((log)_x4) , then find x in terms of y.

If y=log((x^(2))/(e^(2))) then (d^(2)y)/(dx^(2)) equal to: a) -(1)/(x) b) -(1)/(x^(2)) c) (2)/(x^(2)) d) -(2)/(x^(2))

If f(x)=cos((log)_e x),\ t h e n\ f(1/x)f(1/y)-1/2{f(x y)+f(x/y)} is equal to a. "cos"(x-y) b. log(cos(x-y)) c. 0 d. "cos"(x+y)

Find y(x) , if it satisfies the following differential equation (dy)/(dx)=(x-y)^2 , and given that y(1)=1 (A) -ln|(1-x+y)/(1+x-y)|=2(x-1) (B) ln|(2-y)/(2-x)=x+y-1 (C) ln|(1-x+y)/(1+x-y)|=2(x-1) (D) 1/2ln|(1-x+y)/(1+x-y)|+ln|x|=0