Home
Class 12
MATHS
If int (x+sqrt(1+x^(2)))^(n)dx. =(1)/(...

If `int (x+sqrt(1+x^(2)))^(n)dx`.
`=(1)/(a(n+1)){x+sqrt(1+x^(2))}^(n+1)+(1)/(-b(n-1)){x+sqrt(1+x^(2))}^(n-1)+C` Then `(a+b)` is equal to

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (x + \sqrt{1 + x^2})^n \, dx \) and express it in the given form, we will follow these steps: ### Step 1: Substitution Let: \[ t = x + \sqrt{1 + x^2} \] Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 1 + \frac{x}{\sqrt{1 + x^2}} \] This simplifies to: \[ \frac{dt}{dx} = \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}} = \frac{t}{\sqrt{1 + x^2}} \] Thus, we can express \( dx \) as: \[ dx = \frac{\sqrt{1 + x^2}}{t} \, dt \] ### Step 2: Express \( \sqrt{1 + x^2} \) in terms of \( t \) From the substitution \( t = x + \sqrt{1 + x^2} \), we can isolate \( \sqrt{1 + x^2} \): \[ \sqrt{1 + x^2} = t - x \] Squaring both sides gives: \[ 1 + x^2 = (t - x)^2 \] Expanding and rearranging: \[ 1 + x^2 = t^2 - 2tx + x^2 \] This simplifies to: \[ 1 = t^2 - 2tx \quad \Rightarrow \quad 2tx = t^2 - 1 \quad \Rightarrow \quad x = \frac{t^2 - 1}{2t} \] ### Step 3: Substitute back into the integral Now, we need to express \( \sqrt{1 + x^2} \) in terms of \( t \): \[ \sqrt{1 + x^2} = \sqrt{1 + \left(\frac{t^2 - 1}{2t}\right)^2} \] Calculating this gives: \[ \sqrt{1 + x^2} = \sqrt{\frac{4t^2 + (t^2 - 1)^2}{4t^2}} = \frac{\sqrt{t^4 + 2t^2 + 1}}{2t} = \frac{(t^2 + 1)}{2t} \] ### Step 4: Substitute \( dx \) and simplify the integral Now substituting \( dx \) and \( \sqrt{1 + x^2} \) back into the integral: \[ \int (t)^n \cdot \frac{(t^2 + 1)}{2t} \, dt = \frac{1}{2} \int (t^{n-1}(t^2 + 1)) \, dt \] This can be split into two integrals: \[ \frac{1}{2} \left( \int t^{n+1} \, dt + \int t^{n-1} \, dt \right) \] ### Step 5: Integrate Calculating these integrals: \[ \frac{1}{2} \left( \frac{t^{n+1}}{n+1} + \frac{t^{n-1}}{n-1} \right) + C \] ### Step 6: Back-substitute \( t \) Now substituting back \( t = x + \sqrt{1 + x^2} \): \[ = \frac{1}{2(n+1)}(x + \sqrt{1 + x^2})^{n+1} + \frac{1}{2(-b)(n-1)}(x + \sqrt{1 + x^2})^{n-1} + C \] ### Step 7: Identify constants \( a \) and \( b \) From the expression, we can identify: - \( a = 2 \) - \( b = 2 \) Thus, \( a + b = 2 + 2 = 4 \). ### Final Answer \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(1+x^2)-x)^n dx

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

int(1)/((x-1)sqrt(x^(2)-1))dx equals

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

int(sqrt(1-x^(2))+1)/(sqrt(1-x)+1/sqrt(1+x))dx

Evaluate: int1/(x\ sqrt(1+x^n))\ dx

If inte^(x)/(x^(n))dx and -e^(x)/(k_(1)x^(n-1))+1/(k_(2)-1)I_(n-1) , then (k_(2)-k_(1)) is equal to:

Evaluate: inte^x(1+n x^(n-1)-x^(2n))/((1-x^n)sqrt(1-x^(2n)))dx

int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to