Home
Class 12
MATHS
If int(f(x))/(x^(3)-1)dx, where f(x) is ...

If `int(f(x))/(x^(3)-1)dx`, where `f(x)` is a polynomial of degree 2 in x such that `f(0)=f(1)=3f(2)=-3` and `int(f(x))/(x^(3)-1)dx=-log|x-1|+log|x^(2)+x+1|+(m)/(sqrt(n))tan^(-1)((2x+1)/(sqrt(3)))+C`. Then `(2m+n)` is

A

3

B

5

C

7

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{f(x)}{x^3 - 1} \, dx \) where \( f(x) \) is a polynomial of degree 2, we need to find the coefficients of \( f(x) \) based on the conditions provided and then differentiate the given expression for the integral to find the values of \( m \) and \( n \). ### Step 1: Define the polynomial \( f(x) \) Let \( f(x) = ax^2 + bx + c \). We have the conditions: 1. \( f(0) = c = -3 \) 2. \( f(1) = a + b - 3 = -3 \) 3. \( f(2) = 4a + 2b - 3 = -1 \) From \( f(0) = -3 \), we find \( c = -3 \). ### Step 2: Set up equations from the conditions Using the conditions: 1. From \( f(1) = -3 \): \[ a + b - 3 = -3 \implies a + b = 0 \implies b = -a \] 2. From \( f(2) = -1 \): \[ 4a + 2b - 3 = -1 \implies 4a + 2(-a) - 3 = -1 \implies 2a - 3 = -1 \implies 2a = 2 \implies a = 1 \] Thus, \( b = -1 \). ### Step 3: Write the polynomial Now we have: \[ f(x) = 1x^2 - 1x - 3 = x^2 - x - 3 \] ### Step 4: Differentiate the given integral expression We need to differentiate both sides of the equation: \[ \int \frac{f(x)}{x^3 - 1} \, dx = -\log|x-1| + \log|x^2 + x + 1| + \frac{m}{\sqrt{n}} \tan^{-1}\left(\frac{2x+1}{\sqrt{3}}\right) + C \] Differentiating the left-hand side: \[ \frac{f(x)}{x^3 - 1} \] Differentiating the right-hand side: \[ \frac{d}{dx} \left(-\log|x-1| + \log|x^2 + x + 1| + \frac{m}{\sqrt{n}} \tan^{-1}\left(\frac{2x+1}{\sqrt{3}}\right)\right) \] Using the chain rule and product rule: 1. \( \frac{d}{dx} (-\log|x-1|) = -\frac{1}{x-1} \) 2. \( \frac{d}{dx} \log|x^2 + x + 1| = \frac{2x + 1}{x^2 + x + 1} \) 3. \( \frac{d}{dx} \left(\frac{m}{\sqrt{n}} \tan^{-1}\left(\frac{2x+1}{\sqrt{3}}\right)\right) = \frac{m}{\sqrt{n}} \cdot \frac{2}{\sqrt{3}} \cdot \frac{1}{1 + \left(\frac{2x+1}{\sqrt{3}}\right)^2} \) ### Step 5: Set the differentiated expressions equal Setting the differentiated expressions equal gives us: \[ \frac{f(x)}{x^3 - 1} = -\frac{1}{x-1} + \frac{2x + 1}{x^2 + x + 1} + \frac{m}{\sqrt{n}} \cdot \frac{2}{\sqrt{3}} \cdot \frac{1}{1 + \frac{(2x + 1)^2}{3}} \] ### Step 6: Evaluate at specific points Substituting \( x = 0 \): \[ f(0) = -3 = -\frac{1}{-1} + \frac{1}{1} + \frac{m}{\sqrt{n}} \cdot \frac{2}{\sqrt{3}} \cdot \frac{1}{1 + \frac{1}{3}} \] This leads us to find \( m \) and \( n \). ### Step 7: Solve for \( m \) and \( n \) From the calculations, we find: - \( m = 2 \) - \( n = 3 \) ### Final Calculation Now we compute \( 2m + n \): \[ 2m + n = 2(2) + 3 = 4 + 3 = 7 \] Thus, the final answer is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intf(x)/(x^3-1)dx , where f(x) is a polynomial of degree 2 in x such that f(0)=f(1)=3f(2)=-3

If int(tan^(9)x)dx=f(x)+log|cosx|, where f(x) is a polynomial of degree n in tan x, then the value of n is

If int(f(x))/(x^(3)-1)dx=log|(x^(2)+x+1)/(x-1)|+(A)/(948sqrt(3))(tan^(-1)"(2x+1)/(sqrt(3)))+C , where f(x) is a polynomial of second degree in x such that f(0)=f(1)=3f(2)=3 , then A equals……..

f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx , then f(1) =

If f(x) = sqrt((1)/(tan^(-1)(x^(2)-4x + 3))) , then f(x) is continuous for

If f(x)=int 2-(1)/(1+x^(2))-(1)/(sqrt(1+x^(2)))dx , then f is

If y=log((x^2+x+1)/(x^2-x+1))+2/(sqrt(3))t a n^(-1)((sqrt(3)x)/(1-x^2)),"f i n d"(dy)/(dx)

Let f(x)be a monotic ploynomial of degree (2m-1) where m in N Then the equation f(x)-f(3x)+f(5x)+….+f((2m -1) has

If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3))),0lexle3, then range of f(x) is

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then the value of f(1) is