Home
Class 12
MATHS
The value of int((1+x))/(x(1+x e^(x))^(2...

The value of `int((1+x))/(x(1+x e^(x))^(2))dx`,
is equal to

A

(a) `log|(x)/(1+x e^(x))|+(1)/((1+x e^(x)))+C`

B

(b) `log|(x e^(x))/(1+x e^(x))|+(1)/(1+x e^(x))+C`

C

(c) `log |(x e^(x))/(1+e^(x))|+(1)/(1+x e^(x))+C`

D

(d) None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1+x}{x(1+x e^x)^2} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1+x}{x(1+x e^x)^2} \, dx \] ### Step 2: Substitution Let \( t = 1 + x e^x \). Then we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = e^x + x e^x = e^x (1 + x) \] Thus, we have: \[ dt = e^x (1+x) \, dx \quad \Rightarrow \quad dx = \frac{dt}{e^x (1+x)} \] ### Step 3: Express \( x \) in terms of \( t \) From our substitution, we can express \( x \) in terms of \( t \): \[ x e^x = t - 1 \quad \Rightarrow \quad x = \frac{t - 1}{e^x} \] ### Step 4: Substitute in the Integral Substituting \( dx \) and \( t \) back into the integral, we need to express everything in terms of \( t \): \[ I = \int \frac{1+x}{x(1+x e^x)^2} \cdot \frac{dt}{e^x (1+x)} \] This simplifies to: \[ I = \int \frac{dt}{(t-1)t^2} \] ### Step 5: Partial Fraction Decomposition We can decompose \( \frac{1}{(t-1)t^2} \) using partial fractions: \[ \frac{1}{(t-1)t^2} = \frac{A}{t-1} + \frac{B}{t} + \frac{C}{t^2} \] Multiplying both sides by \( (t-1)t^2 \) and equating coefficients, we can solve for \( A \), \( B \), and \( C \). ### Step 6: Solve for Coefficients 1. Set \( t = 1 \): \[ 1 = A(1^2) + B(1)(0) + C(0) \quad \Rightarrow \quad A = 1 \] 2. Set \( t = 0 \): \[ 1 = A(0) + B(0) + C(-1) \quad \Rightarrow \quad C = -1 \] 3. Set \( t = -1 \): \[ 1 = A(1) + B(-1) + C(1) \quad \Rightarrow \quad 1 = A - B - 1 \quad \Rightarrow \quad B = A - 2 \] After solving, we find \( A = 1 \), \( B = 1 \), and \( C = -1 \). Thus: \[ \frac{1}{(t-1)t^2} = \frac{1}{t-1} - \frac{1}{t} - \frac{1}{t^2} \] ### Step 7: Integrate Each Term Now we can integrate each term: \[ I = \int \left( \frac{1}{t-1} - \frac{1}{t} - \frac{1}{t^2} \right) dt \] This gives us: \[ I = \log |t-1| - \log |t| + \frac{1}{t} + C \] ### Step 8: Substitute Back Substituting back \( t = 1 + x e^x \): \[ I = \log |(1 + x e^x) - 1| - \log |1 + x e^x| + \frac{1}{1 + x e^x} + C \] This simplifies to: \[ I = \log |x e^x| - \log |1 + x e^x| + \frac{1}{1 + x e^x} + C \] ### Final Answer Thus, the value of the integral is: \[ I = \log \left| \frac{x e^x}{1 + x e^x} \right| + \frac{1}{1 + x e^x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int((1-x)/(1+x^(2)))^(2) e^(x) dx is equal to

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

int(x e^x)/((1+x)^2)dx is equal to

int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

int(x+1)^(2)e^(x)dx is equal to

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to