Home
Class 12
MATHS
The value of int(dx)/(x+sqrt(a^(2)-x^(2)...

The value of `int(dx)/(x+sqrt(a^(2)-x^(2)))`, is equal to

A

`1/2 sin^(-1)(x/a)+1/2 log |x+sqrt(a^(2)-x^(2))|+C_(1)`

B

`1/2 sin^(-1)(x/a)-1/2log |x+sqrt(a^(2)-x^(2))|+C_(1)`

C

`1/2 sin^(-1)(x/a)-log|x+sqrt(a^(2)-x^(2))|+C_(1)`

D

`1/2 cos^(-1)(x/a)+1/2log|x+sqrt(a^(2)-x^(2))|+C_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{x + \sqrt{a^2 - x^2}} \), we will use a trigonometric substitution. Here are the steps: ### Step 1: Substitution Let \( x = a \sin \theta \). Then, the differential \( dx \) becomes: \[ dx = a \cos \theta \, d\theta \] ### Step 2: Substitute in the Integral Substituting \( x \) and \( dx \) into the integral, we get: \[ I = \int \frac{a \cos \theta \, d\theta}{a \sin \theta + \sqrt{a^2 - (a \sin \theta)^2}} \] ### Step 3: Simplify the Square Root The expression under the square root simplifies as follows: \[ \sqrt{a^2 - (a \sin \theta)^2} = \sqrt{a^2(1 - \sin^2 \theta)} = \sqrt{a^2 \cos^2 \theta} = a \cos \theta \] Thus, the integral becomes: \[ I = \int \frac{a \cos \theta \, d\theta}{a \sin \theta + a \cos \theta} \] This can be simplified further: \[ I = \int \frac{\cos \theta \, d\theta}{\sin \theta + \cos \theta} \] ### Step 4: Split the Integral We can rewrite the integrand: \[ I = \int \frac{\cos \theta}{\sin \theta + \cos \theta} \, d\theta \] To simplify this, we can add and subtract \( \sin \theta \): \[ I = \int \frac{\cos \theta + \sin \theta - \sin \theta}{\sin \theta + \cos \theta} \, d\theta = \int \left(1 - \frac{\sin \theta}{\sin \theta + \cos \theta}\right) d\theta \] ### Step 5: Integrate Now, we can integrate term by term: \[ I = \int d\theta - \int \frac{\sin \theta}{\sin \theta + \cos \theta} \, d\theta \] The first integral is simply \( \theta \). For the second integral, we can use the substitution \( u = \sin \theta + \cos \theta \), which gives \( du = (\cos \theta - \sin \theta) d\theta \). ### Step 6: Back Substitution After integrating and simplifying, we substitute back \( \theta = \sin^{-1} \left( \frac{x}{a} \right) \) and express everything in terms of \( x \): \[ I = \frac{1}{2} \sin^{-1} \left( \frac{x}{a} \right) + \frac{1}{2} \log \left( x + \sqrt{a^2 - x^2} \right) + C \] ### Final Result Thus, the value of the integral is: \[ I = \frac{1}{2} \sin^{-1} \left( \frac{x}{a} \right) + \frac{1}{2} \log \left( x + \sqrt{a^2 - x^2} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

The value of: int(dx)/(sqrt(a^(2)-x^(2)))

int ( dx)/( sqrt( 2x - x^(2))) is equal to

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

int(a^(x//2))/(sqrt(a^(-2)-a^(x)))dx is equal to

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int(dx)/(sqrt(x-x^(2))) equal is :