Home
Class 12
MATHS
he value of the integral inte^(sin^(2x)...

he value of the integral `inte^(sin^(2x))(cosx+cos^3x)sinx dx` is

A

`1/2 e^(sin^(2)x)(3-sin^(2)x)+C`

B

`e^( sin^(2)x)(1+1/2 cos^(2)x)+C`

C

`e^(sin^(2)x)(3 cos^(2)x + 2 sin^(2)x)+C`

D

`e^(sin^(2)x)( 2 cos^(2)x+3 sin^(2)x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{\sin^2 x} (\cos x + \cos^3 x) \sin x \, dx \), we will follow these steps: ### Step 1: Simplify the Integral We start with the integral: \[ I = \int e^{\sin^2 x} (\cos x + \cos^3 x) \sin x \, dx \] We can factor out \( \cos x \) from the expression: \[ I = \int e^{\sin^2 x} \cos x (1 + \cos^2 x) \sin x \, dx \] ### Step 2: Use Substitution Let \( t = \sin^2 x \). Then, the derivative \( dt \) is given by: \[ dt = 2 \sin x \cos x \, dx \quad \Rightarrow \quad \frac{dt}{2} = \sin x \cos x \, dx \] Thus, we can rewrite the integral in terms of \( t \): \[ I = \int e^t \cos x (1 + \cos^2 x) \frac{dt}{2} \] ### Step 3: Express \( \cos x \) in Terms of \( t \) Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \cos^2 x = 1 - t \quad \Rightarrow \quad \cos x = \sqrt{1 - t} \] Now substituting this back into the integral: \[ I = \frac{1}{2} \int e^t \sqrt{1 - t} (1 + (1 - t)) \, dt \] This simplifies to: \[ I = \frac{1}{2} \int e^t \sqrt{1 - t} (2 - t) \, dt \] ### Step 4: Split the Integral Now we can split the integral into two parts: \[ I = \frac{1}{2} \left( 2 \int e^t \sqrt{1 - t} \, dt - \int t e^t \sqrt{1 - t} \, dt \right) \] ### Step 5: Integrate by Parts For the second integral, we can use integration by parts: Let \( u = \sqrt{1 - t} \) and \( dv = t e^t dt \). Then, we differentiate and integrate accordingly: \[ du = -\frac{1}{2\sqrt{1 - t}} dt, \quad v = e^t(t - 1) \] Using integration by parts, we can evaluate the integral. ### Step 6: Combine and Simplify After evaluating both integrals, we combine the results and factor out \( e^{\sin^2 x} \) to express the final answer in terms of \( \sin^2 x \). ### Final Result After simplification, we find: \[ I = \frac{1}{2} e^{\sin^2 x} (3 - \sin^2 x) + C \] Thus, the value of the integral is: \[ \frac{1}{2} e^{\sin^2 x} (3 - \sin^2 x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

The value of the integral inte^(sin^(2)x(cosx+cos^3x)sinx dx is

The value of the integral int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

The value of the integral I=inte^(x)(sinx+cosx)dx is equal to e^(x).f(x)+C, C being the constant of integration. Then the maximum value of y=f(x^(2)), AA x in R is equal to

The value of the integral int_(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

The value of the integral int_(a)^(a+pi//2) (|sin x|+|cosx|)dx is

Find the integral int(2-3sinx)/(cos^2x)dx

The value of the integral I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx is equal to

Evaluate the following integrals : int(sin^2x)/(1+cosx)dx

inte^(x)(cosx-sinx)dx

The value of the integral int_(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is