Home
Class 12
MATHS
Find int(sqrt(cotx)+sqrt(tanx))dx...

Find `int(sqrt(cotx)+sqrt(tanx))dx`

A

`sqrt(2)sin^(-1)(sin x - cos x)`

B

`(pi)/(2)-sqrt(2) cos^(-1)(sin x- cos x)`

C

`sqrt(2) tan^(-1)((tan x-1)/(sqrt(2)sqrt(tan x)))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (\sqrt{\cot x} + \sqrt{\tan x}) \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Trigonometric Functions**: We know that: \[ \cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Therefore, we can express the integral as: \[ \int \left( \sqrt{\frac{\cos x}{\sin x}} + \sqrt{\frac{\sin x}{\cos x}} \right) \, dx \] 2. **Combine the Terms**: We can combine the square roots: \[ \int \left( \frac{\sqrt{\cos x}}{\sqrt{\sin x}} + \frac{\sqrt{\sin x}}{\sqrt{\cos x}} \right) \, dx = \int \left( \frac{\sqrt{\cos x} \cdot \sqrt{\cos x} + \sqrt{\sin x} \cdot \sqrt{\sin x}}{\sqrt{\sin x} \cdot \sqrt{\cos x}} \right) \, dx \] This simplifies to: \[ \int \frac{\sqrt{\sin x \cos x} (\sqrt{\cos x} + \sqrt{\sin x})}{\sqrt{\sin x \cos x}} \, dx \] 3. **Finding a Common Denominator**: Taking the common denominator: \[ \int \frac{\sqrt{\sin x \cos x} (\sqrt{\cos x} + \sqrt{\sin x})}{\sqrt{\sin x \cos x}} \, dx = \int \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x \cos x}} \, dx \] 4. **Using the Half-Angle Identity**: We know that: \[ 2 \sin x \cos x = \sin 2x \] Thus, we can express the integral as: \[ \int \frac{\sqrt{2}}{\sqrt{\sin 2x}} (\sqrt{\sin x} + \sqrt{\cos x}) \, dx \] 5. **Substituting for Simplification**: Let \( t = \sin x - \cos x \). Then, we differentiate: \[ dt = \cos x \, dx - (-\sin x \, dx) = (\cos x + \sin x) \, dx \] So, we have: \[ dx = \frac{dt}{\cos x + \sin x} \] 6. **Substituting Back into the Integral**: Substitute \( dx \) into the integral: \[ \int \frac{\sqrt{2} (\sqrt{\sin x} + \sqrt{\cos x})}{\sqrt{1 - t^2}} \cdot \frac{dt}{\cos x + \sin x} \] The \( \cos x + \sin x \) cancels out. 7. **Final Integration**: The integral simplifies to: \[ \sqrt{2} \int \frac{dt}{\sqrt{1 - t^2}} = \sqrt{2} \sin^{-1}(t) + C \] Substituting back \( t = \sin x - \cos x \): \[ = \sqrt{2} \sin^{-1}(\sin x - \cos x) + C \] ### Final Answer: \[ \int (\sqrt{\cot x} + \sqrt{\tan x}) \, dx = \sqrt{2} \sin^{-1}(\sin x - \cos x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If I=int(sqrt(cotx)-sqrt(tanx))dx, then I equals

If I=int(sqrt(cotx)-sqrt(tanx))dx ,t h e nIe q u a l sqrt(2)"log"(sqrt(tanx)-sqrt(cotx))+C sqrt(2)log|sinx|cosx+sqrt(sin2x)|+C sqrt(2)log|s inx-cosx+sqrt(2)s inxcosx|+C sqrt(2)log|sin(x+pi/4)+sqrt(2)sinxcosx|+C

int(sec^(2)x)/(sqrt(tanx))dx

Find int(1)/(sqrt(x)sqrt(1-x))dx

Evaluate: int(sqrt(cotx)-sqrt(tanx))/(1+3sin2x)dx

Evaluate the following integral: int_0^(pi//2)(sqrt(cotx))/(sqrt(cotx\ )+sqrt(tanx))dx

Find int_0^1dx/(sqrt(x+1)+sqrt(x))

Evaluate: int(sqrt(tanx)+sqrt(cotx))dx

Evaluate: int(sqrt(tanx)+sqrt(cotx))dx

Comprehension 2 (Q.No 4 to 6) It is known that sqrt(tanx)+sqrt(cotx)={{:(sqrt(sinx)/sqrt(cosx)+sqrt(cosx)/sqrt(sinx), if 0ltxltpi/2),(sqrt(-sinx)/sqrt(cosx)+sqrt(-cosx)/sqrt(-sinx),if pi lt x lt (3pi)/(2)):} d/(dx)(sqrt(tanx)-sqrt(cotx)) =1/2(sqrt(tanx)+sqrt(cotx))(tanx+cotx), AA in (0,pi,2) uu (pi,(3pi)/2) and d/(dx)(sqrt(tanx)+sqrt(cotx))=1/2(sqrt(tanx)-sqrt(cotx))(tanx+cotx), AA x in (0,pi/2) uu (pi, (3pi)/(2)) . Value of the integral I=int(sqrt(tanx)+sqrt(cotx)) dx, where x in (0,pi/2) , is