Home
Class 12
MATHS
For integral int f(x- a/x)*(1+a/x^(2))dx...

For integral `int f(x- a/x)*(1+a/x^(2))dx`, put `x-a/x=t`
For integral `int f(x+a/x)*(1-(a)/(x^(2)))dx`, put `x+a/x =t`
For integral `int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx`, put `x^(2)-(a)/(x^(2))=t`
For integral `int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx`, put `x^(2)+(a)/(x^(2))=t`
many integrands can be brought into above forms by suitable reductions or transformations .
`int(x^(4)-2)/(x^(2)sqrt(x^(4)+x^(2)+2))dx`

A

`sqrt(x^(2)+1+(1)/(x^(2)))+C`

B

`sqrt(x^(2)+1+(2)/(x^(2)))+C`

C

`sqrt(x^(2)+(1)/(x^(2)))+C`

D

`sqrt(x^(2)+(2)/(x^(2)))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^4 - 2}{x^2 \sqrt{x^4 + x^2 + 2}} \, dx, \] we will follow the steps outlined in the video transcript. ### Step 1: Simplify the Integral First, we will take \(x^2\) common from the denominator: \[ \int \frac{x^4 - 2}{x^2 \sqrt{x^4 + x^2 + 2}} \, dx = \int \frac{x^4 - 2}{x^2} \cdot \frac{1}{\sqrt{x^4 + x^2 + 2}} \, dx. \] This simplifies to: \[ \int \frac{x^2 - \frac{2}{x^2}}{\sqrt{x^4 + x^2 + 2}} \, dx. \] ### Step 2: Rewrite the Denominator Next, rewrite the denominator: \[ \sqrt{x^4 + x^2 + 2} = \sqrt{x^4 + x^2 + 2} = \sqrt{(x^2)^2 + (1)^2 + 2} = \sqrt{x^4 + x^2 + 2}. \] ### Step 3: Identify the Form Now, we can see that the integral resembles the form: \[ \int f(x^2 + \frac{a}{x^2}) \cdot (x - \frac{a}{x^3}) \, dx. \] Here, we can set: \[ t = x^2 + \frac{2}{x^2}. \] ### Step 4: Differentiate to Find \(dt\) Now, we differentiate \(t\): \[ dt = \left(2x - \frac{4}{x^3}\right) dx = \left(2x - \frac{4}{x^3}\right) dx. \] ### Step 5: Substitute in the Integral From the expression for \(dt\), we can express \(dx\): \[ dx = \frac{dt}{2x - \frac{4}{x^3}}. \] Substituting back into the integral: \[ \int \frac{x^2 - \frac{2}{x^2}}{\sqrt{t}} \cdot \frac{dt}{2x - \frac{4}{x^3}}. \] ### Step 6: Integrate Now, we can integrate: \[ \int \frac{1}{\sqrt{t}} \, dt = 2\sqrt{t} + C. \] ### Step 7: Substitute Back Finally, we substitute back for \(t\): \[ 2\sqrt{x^2 + \frac{2}{x^2}} + C. \] Thus, the final answer is: \[ \int \frac{x^4 - 2}{x^2 \sqrt{x^4 + x^2 + 2}} \, dx = 2\sqrt{x^2 + \frac{2}{x^2}} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

For integral int f(x- a/x)*(1+a/x^(2))dx , put x-a/x=t For integral int f(x+a/x)*(1-(a)/(x^(2)))dx , put x+a/x =t For integral int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx , put x^(2)-(a)/(x^(2))=t For integral int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx , put x^(2)+(a)/(x^(2))=t many integrands can be brought into above forms by suitable reductions or transformations . int(5x^(4)+4x^(5))/((x^(5)+x+1)^(2))dx

For integral int f(x- a/x)*(1+a/x^(2))dx , put x-a/x=t For integral int f(x+a/x)*(1-(a)/(x^(2)))dx , put x+a/x =t For integral int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx , put x^(2)-(a)/(x^(2))=t For integral int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx , put x^(2)+(a)/(x^(2))=t many integrands can be brought into above forms by suitable reductions or transformations . int((x-1))/((x+1)sqrt(x^(3)+x^(2)+x))dx

Integrate int(x*e^(x))/((1+x)^(2))dx .

Integrate int((x^(2n)-x^(2n-3)))/((2x^(3)+1)^(n))dx .

Integrate : int(dx)/((x+1)^(2)+1)

integrate this int ( x^2+1)/(x^2-5x+6)dx

integrate this int ( x^2+1)/(x^2-5x+6)dx

Evaluate the following Integrals : int (x^(2))/((x-1)(x-2)(x-3))dx

Evaluate the following integration int(x^(2)+3)/(x^(6)(x^(2)+1))dx

Integrate : int xsqrt(x+x^2)dx