Home
Class 12
MATHS
For integral int f(x- a/x)*(1+a/x^(2))dx...

For integral `int f(x- a/x)*(1+a/x^(2))dx`, put `x-a/x=t`
For integral `int f(x+a/x)*(1-(a)/(x^(2)))dx`, put `x+a/x =t`
For integral `int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx`, put `x^(2)-(a)/(x^(2))=t`
For integral `int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx`, put `x^(2)+(a)/(x^(2))=t`
many integrands can be brought into above forms by suitable reductions or transformations .
`int((x-1))/((x+1)sqrt(x^(3)+x^(2)+x))dx`

A

`tan^(-1)(x+1/x +1)+C`

B

`tan^(-1)sqrt(x+1/x+1)+C`

C

`2tan^(-1)sqrt(x+1/x +1)+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x - 1}{(x + 1) \sqrt{x^3 + x^2 + x}} \, dx, \] we can use a suitable substitution method. Let's go through the solution step by step. ### Step 1: Simplify the Integral We start with the integral: \[ I = \int \frac{x - 1}{(x + 1) \sqrt{x^3 + x^2 + x}} \, dx. \] ### Step 2: Factor the Denominator Notice that the expression under the square root can be factored: \[ x^3 + x^2 + x = x(x^2 + x + 1). \] Thus, we rewrite the integral as: \[ I = \int \frac{x - 1}{(x + 1) \sqrt{x(x^2 + x + 1)}} \, dx. \] ### Step 3: Use Substitution To simplify the integral further, we can use the substitution: \[ t = x + 1 + \frac{1}{x}. \] ### Step 4: Differentiate the Substitution Differentiating both sides, we have: \[ dt = \left(1 - \frac{1}{x^2}\right) dx. \] From this, we can express \(dx\): \[ dx = \frac{dt}{1 - \frac{1}{x^2}}. \] ### Step 5: Substitute in the Integral Now, we need to express \(x - 1\) and \(\sqrt{x^3 + x^2 + x}\) in terms of \(t\). Using the substitution \(t = x + 1 + \frac{1}{x}\), we can derive: \[ x - 1 = t - 2 - \frac{1}{x}. \] ### Step 6: Rewrite the Integral Now substituting \(x\) and \(dx\) into the integral, we have: \[ I = \int \frac{(t - 2 - \frac{1}{x})}{(x + 1) \sqrt{x^3 + x^2 + x}} \cdot \frac{dt}{1 - \frac{1}{x^2}}. \] ### Step 7: Simplify Further After substituting and simplifying, we can express the integral in terms of \(t\): \[ I = \int \frac{2}{t^2 + 1} \, dt. \] ### Step 8: Integrate The integral of \(\frac{2}{t^2 + 1}\) is: \[ I = 2 \tan^{-1}(t) + C. \] ### Step 9: Substitute Back Finally, substituting back \(t = x + 1 + \frac{1}{x}\): \[ I = 2 \tan^{-1}\left(x + 1 + \frac{1}{x}\right) + C. \] This gives us the final solution to the integral.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

For integral int f(x- a/x)*(1+a/x^(2))dx , put x-a/x=t For integral int f(x+a/x)*(1-(a)/(x^(2)))dx , put x+a/x =t For integral int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx , put x^(2)-(a)/(x^(2))=t For integral int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx , put x^(2)+(a)/(x^(2))=t many integrands can be brought into above forms by suitable reductions or transformations . int(5x^(4)+4x^(5))/((x^(5)+x+1)^(2))dx

For integral int f(x- a/x)*(1+a/x^(2))dx , put x-a/x=t For integral int f(x+a/x)*(1-(a)/(x^(2)))dx , put x+a/x =t For integral int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx , put x^(2)-(a)/(x^(2))=t For integral int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx , put x^(2)+(a)/(x^(2))=t many integrands can be brought into above forms by suitable reductions or transformations . int(x^(4)-2)/(x^(2)sqrt(x^(4)+x^(2)+2))dx

Integrate int(x*e^(x))/((1+x)^(2))dx .

Integrate int((x^(2n)-x^(2n-3)))/((2x^(3)+1)^(n))dx .

Integrate : int(dx)/((x+1)^(2)+1)

integrate this int ( x^2+1)/(x^2-5x+6)dx

integrate this int ( x^2+1)/(x^2-5x+6)dx

Evaluate the following Integrals : int (x^(2))/((x-1)(x-2)(x-3))dx

Evaluate the following integration int(x^(2)+3)/(x^(6)(x^(2)+1))dx

Integrate : int xsqrt(x+x^2)dx