Home
Class 12
MATHS
For integral int f(x- a/x)*(1+a/x^(2))dx...

For integral `int f(x- a/x)*(1+a/x^(2))dx`, put `x-a/x=t`
For integral `int f(x+a/x)*(1-(a)/(x^(2)))dx`, put `x+a/x =t`
For integral `int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx`, put `x^(2)-(a)/(x^(2))=t`
For integral `int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx`, put `x^(2)+(a)/(x^(2))=t`
many integrands can be brought into above forms by suitable reductions or transformations .
`int(5x^(4)+4x^(5))/((x^(5)+x+1)^(2))dx`

A

`x^(5)+x+1+C`

B

`(x^(5))/(x^(5)+x+1)+C`

C

`x^(-4)+x^(-5)+C`

D

`(x^(5))/(x^(5)+x+1)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{5x^4 + 4x^5}{(x^5 + x + 1)^2} \, dx \), we will follow these steps: ### Step 1: Simplify the Integral First, we can factor out \( x^5 \) from the denominator: \[ I = \int \frac{5x^4 + 4x^5}{(x^5 + x + 1)^2} \, dx = \int \frac{5x^4 + 4x^5}{x^{10}(1 + \frac{1}{x^4} + \frac{1}{x^5})^2} \, dx \] ### Step 2: Substitute for Simplicity Let \( t = 1 + \frac{1}{x^4} + \frac{1}{x^5} \). Then, we need to find \( dt \): \[ dt = -\left(\frac{4}{x^5} + \frac{5}{x^6}\right) dx \] Rearranging gives: \[ dx = -\frac{x^6}{4 + 5/x} dt \] ### Step 3: Rewrite the Integral Now substituting \( t \) and \( dx \) into the integral: \[ I = \int \frac{5x^4 + 4x^5}{(x^5 + x + 1)^2} \cdot -\frac{x^6}{4 + 5/x} dt \] This simplifies to: \[ I = -\int \frac{5x^4 + 4x^5}{t^2} \cdot \left(\frac{x^6}{4 + 5/x}\right) dt \] ### Step 4: Further Simplification Now, we can express \( 5x^4 + 4x^5 \) in terms of \( t \): \[ I = -\int \frac{(5 + 4x)x^4}{t^2} dt \] ### Step 5: Solve the Integral The integral can now be expressed as: \[ I = -\int \frac{1}{t^2} dt \] The integral of \( t^{-2} \) is: \[ I = \frac{1}{t} + C \] ### Step 6: Substitute Back for \( t \) Substituting back for \( t \): \[ I = \frac{1}{1 + \frac{1}{x^4} + \frac{1}{x^5}} + C = \frac{x^5}{x^5 + x + 1} + C \] ### Final Answer: Thus, the integral evaluates to: \[ I = \frac{x^5}{x^5 + x + 1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

For integral int f(x- a/x)*(1+a/x^(2))dx , put x-a/x=t For integral int f(x+a/x)*(1-(a)/(x^(2)))dx , put x+a/x =t For integral int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx , put x^(2)-(a)/(x^(2))=t For integral int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx , put x^(2)+(a)/(x^(2))=t many integrands can be brought into above forms by suitable reductions or transformations . int(x^(4)-2)/(x^(2)sqrt(x^(4)+x^(2)+2))dx

For integral int f(x- a/x)*(1+a/x^(2))dx , put x-a/x=t For integral int f(x+a/x)*(1-(a)/(x^(2)))dx , put x+a/x =t For integral int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx , put x^(2)-(a)/(x^(2))=t For integral int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx , put x^(2)+(a)/(x^(2))=t many integrands can be brought into above forms by suitable reductions or transformations . int((x-1))/((x+1)sqrt(x^(3)+x^(2)+x))dx

Integrate int(x*e^(x))/((1+x)^(2))dx .

Integrate int((x^(2n)-x^(2n-3)))/((2x^(3)+1)^(n))dx .

Integrate : int(dx)/((x+1)^(2)+1)

Find the integral int(x^3+5x^2-4)/(x^2)dx

integrate this int ( x^2+1)/(x^2-5x+6)dx

integrate this int ( x^2+1)/(x^2-5x+6)dx

Evaluate the following Integrals : int (x^(2))/((x-1)(x-2)(x-3))dx

Integrate : int xsqrt(x+x^2)dx