Home
Class 12
MATHS
If the primitive of the function f(x)=(...

If the primitive of the function `f(x)=(x^(2009))/((1+x^(2))^(1006))` w.r.t. x is equal to `1/n ((x^(2))/(1+x^(2)))^(m)+C`, then `n/m` is equal to .......

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral of the function \( f(x) = \frac{x^{2009}}{(1 + x^2)^{1006}} \) and express it in the form given in the question. Let's go through the steps one by one. ### Step 1: Set up the integral We start with the integral: \[ I = \int \frac{x^{2009}}{(1 + x^2)^{1006}} \, dx \] ### Step 2: Simplify the integrand We can factor out \( x^2 \) from the denominator: \[ I = \int \frac{x^{2009}}{(1 + x^2)^{1006}} \, dx = \int \frac{x^{2009}}{x^2(1 + \frac{1}{x^2})^{1006}} \, dx = \int \frac{x^{2007}}{(1 + \frac{1}{x^2})^{1006}} \, dx \] ### Step 3: Substitute Let \( t = 1 + \frac{1}{x^2} \). Then, we differentiate both sides: \[ dt = -\frac{2}{x^3} \, dx \quad \Rightarrow \quad dx = -\frac{x^3}{2} \, dt \] From our substitution, we have: \[ x^2 = \frac{1}{t - 1} \quad \Rightarrow \quad x^3 = \left(\frac{1}{t - 1}\right)^{3/2} \] ### Step 4: Rewrite the integral in terms of \( t \) Substituting \( x^3 \) and \( dx \) into the integral, we have: \[ I = \int \frac{\left(\frac{1}{t - 1}\right)^{2007/2}}{t^{1006}} \left(-\frac{\left(\frac{1}{t - 1}\right)^{3/2}}{2}\right) dt \] This simplifies to: \[ I = -\frac{1}{2} \int \frac{1}{(t - 1)^{1005}} \cdot \frac{1}{t^{1006}} \, dt \] ### Step 5: Solve the integral Now we can integrate: \[ I = -\frac{1}{2} \cdot \int (t - 1)^{-1005} t^{-1006} \, dt \] Using the formula for integration, we find: \[ I = -\frac{1}{2} \cdot \left( \frac{(t - 1)^{-1004}}{-1004} \cdot \frac{1}{t^{1006}} \right) + C \] ### Step 6: Substitute back for \( t \) Substituting back \( t = 1 + \frac{1}{x^2} \): \[ I = -\frac{1}{2} \cdot \left( \frac{(1 + \frac{1}{x^2} - 1)^{-1004}}{-1004} \cdot \frac{1}{(1 + \frac{1}{x^2})^{1006}} \right) + C \] This simplifies to: \[ I = \frac{1}{2008} \cdot \frac{x^2}{(1 + x^2)^{1005}} + C \] ### Step 7: Compare with the given form The expression we found can be compared to the form given in the question: \[ \frac{1}{n} \left( \frac{x^2}{1 + x^2} \right)^{m} + C \] From our result, we have: - \( n = 2008 \) - \( m = 1005 \) ### Step 8: Calculate \( \frac{n}{m} \) Thus, we find: \[ \frac{n}{m} = \frac{2008}{1005} = \frac{2}{1} = 2 \] ### Final Answer The value of \( \frac{n}{m} \) is \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Range of the function f(x)=(1+x^2)/(x^2) is equal to

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

If the function f: R -{1,-1} to A definded by f(x)=(x^(2))/(1-x^(2)) , is surjective, then A is equal to

If the function f(x)=((1-x))/(2)tan.(pix)/(2) is continuous at x = 1, then f(1) is equal to

For which Domain, the functions f(x) = 2x^2-1 and g(x)=1-3x are equal to

If the coefficient of x^(2) + coefficient of x in the expanssion of (1+x)^(m)(1-x)^(n),(mnen) is equal to – m, then the value of n – m is equal to: