Home
Class 12
MATHS
If I(m"," n)=int cos^(m)x*cos nx dx, sho...

If `I_(m"," n)=int cos^(m)x*cos nx dx`, show that `(m+n)I_(m","n)=cos^(m)x*sin nx+m I_((m-1","n-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \[ (m+n)I_{m,n} = \cos^m x \sin nx + m I_{m-1,n-1} \] where \[ I_{m,n} = \int \cos^m x \cos nx \, dx. \] ### Step-by-Step Solution: 1. **Define the Integral**: We start with the definition of the integral: \[ I_{m,n} = \int \cos^m x \cos nx \, dx. \] 2. **Integration by Parts**: We will use integration by parts. Let: - \( u = \cos^m x \) (first part) - \( dv = \cos nx \, dx \) (second part) Then, we differentiate and integrate: - \( du = -m \cos^{m-1} x \sin x \, dx \) - \( v = \frac{\sin nx}{n} \) 3. **Apply Integration by Parts**: Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I_{m,n} = \left[ \cos^m x \cdot \frac{\sin nx}{n} \right] - \int \frac{\sin nx}{n} \cdot (-m \cos^{m-1} x \sin x) \, dx. \] This simplifies to: \[ I_{m,n} = \frac{\cos^m x \sin nx}{n} + \frac{m}{n} \int \cos^{m-1} x \sin^2 x \cos nx \, dx. \] 4. **Use the Identity for \(\sin^2 x\)**: Recall that \(\sin^2 x = 1 - \cos^2 x\). Thus, we can rewrite the integral: \[ \int \cos^{m-1} x \sin^2 x \cos nx \, dx = \int \cos^{m-1} x (1 - \cos^2 x) \cos nx \, dx. \] This expands to: \[ \int \cos^{m-1} x \cos nx \, dx - \int \cos^{m+1} x \cos nx \, dx. \] The first integral is \(I_{m-1,n}\) and the second integral can be rewritten as \(I_{m+1,n}\). 5. **Substituting Back**: Substitute back into the equation: \[ I_{m,n} = \frac{\cos^m x \sin nx}{n} + \frac{m}{n} \left( I_{m-1,n} - I_{m+1,n} \right). \] 6. **Rearranging the Equation**: Multiply through by \(n\) to eliminate the denominator: \[ n I_{m,n} = \cos^m x \sin nx + m I_{m-1,n}. \] 7. **Final Rearrangement**: Now, we can express \(I_{m,n}\) in terms of \(m+n\): \[ (m+n) I_{m,n} = \cos^m x \sin nx + m I_{m-1,n-1}. \] ### Conclusion: Thus, we have shown that \[ (m+n)I_{m,n} = \cos^m x \sin nx + m I_{m-1,n-1}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If I_(m)=int (sin x+cos x)^(m)dx , then show that m l_(m)=(sin x+ cos x)^(m-1)*(sin x- cos x)+2(m-1) I_(m-2)

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

I_(m,n)=int(cos^mxcosnxdx=(cos^mxsinx)/(m+n)+f(m,n)I_(m-1,n-1) ,

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

The formula in which a certain integral involving some parameters in connected with some integrals of lower order is called a reduction formula. In most of the cases the reduction formula is obtained by the process of integrating by parts. Of course, in some cases the methods of differentiation are adopted.Now answer the question:If I_(m-2,n+2)=intsin^(m-2)xcos^(n+2)xdx and I_(m,n)=-(sin^(m-1)xcos^(n+1)x)/(n+1)+f(m,n)I_((m-2),(n+2)) , then f(2,3) is equal to (A) 1/2 (B) 1/3 (C) 1/4 (D) 1/5

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

If I(m) = int_0^pi ln(1-2m cos x + m^2)dx , then I(1)=

Differentiate sin^(m)x*cos^(n)x