Home
Class 12
MATHS
int tan(pi/4-x)/(cos^2xsqrt(tan^3x+tan^2...

`int tan(pi/4-x)/(cos^2xsqrt(tan^3x+tan^2x+tanx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cos^2 x \sqrt{\tan^3 x + \tan^2 x + \tan x}} \, dx, \] we will follow a series of substitutions and simplifications. ### Step 1: Substitute for \(\tan\left(\frac{\pi}{4} - x\right)\) Using the identity \[ \tan\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan x}{1 + \tan x}, \] we can rewrite the integral as: \[ I = \int \frac{\frac{1 - \tan x}{1 + \tan x}}{\cos^2 x \sqrt{\tan^3 x + \tan^2 x + \tan x}} \, dx. \] ### Step 2: Rewrite \(\cos^2 x\) Recall that \[ \frac{1}{\cos^2 x} = \sec^2 x. \] Thus, we can rewrite the integral as: \[ I = \int \frac{(1 - \tan x) \sec^2 x}{(1 + \tan x) \sqrt{\tan^3 x + \tan^2 x + \tan x}} \, dx. \] ### Step 3: Substitute \(\tan x = u\) Let \(u = \tan x\). Then, we have: \[ \sec^2 x \, dx = du \quad \text{or} \quad dx = \frac{du}{\sec^2 x} = \frac{du}{1 + u^2}. \] Substituting this into the integral gives: \[ I = \int \frac{(1 - u) \cdot \frac{du}{1 + u^2}}{(1 + u) \sqrt{u^3 + u^2 + u}}. \] ### Step 4: Simplify the Integral Now we can simplify the integral: \[ I = \int \frac{(1 - u)}{(1 + u) \sqrt{u^3 + u^2 + u}} \cdot \frac{du}{1 + u^2}. \] ### Step 5: Factor the Denominator Notice that: \[ \sqrt{u^3 + u^2 + u} = \sqrt{u(u^2 + u + 1)}. \] Thus, we can rewrite the integral as: \[ I = \int \frac{(1 - u)}{(1 + u) \sqrt{u} \sqrt{u^2 + u + 1}} \cdot \frac{du}{1 + u^2}. \] ### Step 6: Further Simplification We can now multiply the numerator and denominator by \(1 + u\): \[ I = \int \frac{(1 - u)(1 + u)}{(1 + u^2)(1 + u) \sqrt{u^2 + u + 1}} \, du. \] This gives us: \[ I = \int \frac{1 - u^2}{(1 + u^2)(1 + u) \sqrt{u^2 + u + 1}} \, du. \] ### Step 7: Solve the Integral Now we can integrate term by term. The integral can be split into two parts: \[ I = \int \frac{1}{(1 + u^2)(1 + u) \sqrt{u^2 + u + 1}} \, du - \int \frac{u^2}{(1 + u^2)(1 + u) \sqrt{u^2 + u + 1}} \, du. \] ### Step 8: Final Substitution Finally, we will need to revert back to \(x\) by substituting \(u = \tan x\) back into the expression. ### Conclusion The final result of the integral will be: \[ I = -2 \tan^{-1}\left(\frac{\tan x + 1}{\sqrt{\tan^2 x + 1}}\right) + C, \] where \(C\) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int tanx.tan2x.tan3xdx =

int(cot^2 2x+tan^2 3x)dx

"I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c

Evaluate: int((3tan^2x+2)sec^2x)/((tan^3x+2tanx+5))dx

int (1-tan^2x)/(1+tan^2x) dx

int x^3 (sec^2x-tan^2x)dx

Prove that: (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2

Evaluate: inttanxsec^2xsqrt(1-tan^2x)dx

Evaluate: int_0^(4pi)(dx)/(cos^2x(2+tan^2x)

int((1+sqrt(tanx))(1+tan^(2)x))/(2tanx)dx equals to