Home
Class 12
MATHS
Evaluate int(tan^(-1)x)/(x^(4))dx....

Evaluate `int(tan^(-1)x)/(x^(4))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{\tan^{-1}(x)}{x^4} \, dx \), we will use integration by parts. Let's go through the solution step by step. ### Step 1: Identify \( u \) and \( dv \) We choose: - \( u = \tan^{-1}(x) \) (which we will differentiate) - \( dv = \frac{1}{x^4} \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we compute \( du \) and \( v \): - \( du = \frac{1}{1 + x^2} \, dx \) - To find \( v \), we integrate \( dv \): \[ v = \int \frac{1}{x^4} \, dx = -\frac{1}{3x^3} \] ### Step 3: Apply Integration by Parts Formula The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ I = \tan^{-1}(x) \left(-\frac{1}{3x^3}\right) - \int \left(-\frac{1}{3x^3}\right) \left(\frac{1}{1 + x^2}\right) \, dx \] This simplifies to: \[ I = -\frac{\tan^{-1}(x)}{3x^3} + \frac{1}{3} \int \frac{1}{x^3(1 + x^2)} \, dx \] ### Step 4: Evaluate the Remaining Integral Now we need to evaluate: \[ \int \frac{1}{x^3(1 + x^2)} \, dx \] We can use partial fractions to simplify this integral: \[ \frac{1}{x^3(1 + x^2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{1 + x^2} \] Multiplying through by \( x^3(1 + x^2) \) and equating coefficients will yield values for \( A, B, C, \) and \( D \). ### Step 5: Solve for Coefficients After setting up the equation and solving for the coefficients, we find: - \( A = 0 \) - \( B = 0 \) - \( C = 1 \) - \( D = -1 \) Thus, we can rewrite the integral as: \[ \int \left( \frac{1}{x^3} - \frac{1}{1 + x^2} \right) \, dx \] ### Step 6: Integrate Each Term Now we integrate each term: 1. \( \int \frac{1}{x^3} \, dx = -\frac{1}{2x^2} \) 2. \( \int \frac{1}{1 + x^2} \, dx = \tan^{-1}(x) \) Putting it all together, we have: \[ \int \frac{1}{x^3(1 + x^2)} \, dx = -\frac{1}{2x^2} - \tan^{-1}(x) \] ### Step 7: Substitute Back Now substituting back into our expression for \( I \): \[ I = -\frac{\tan^{-1}(x)}{3x^3} + \frac{1}{3} \left(-\frac{1}{2x^2} - \tan^{-1}(x)\right) \] ### Step 8: Simplify Combining the terms, we get: \[ I = -\frac{\tan^{-1}(x)}{3x^3} - \frac{1}{6x^2} - \frac{1}{3}\tan^{-1}(x) + C \] Where \( C \) is the constant of integration. ### Final Answer Thus, the final answer is: \[ I = -\frac{\tan^{-1}(x)}{3x^3} - \frac{1}{6x^2} - \frac{1}{3}\tan^{-1}(x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(tan^(-1)x)/(1+x^2)dx

Evaluate: int(tan^-1x)^2/(1+x^2)dx

Evaluate: inte^(tan^-1x)/(1+x^2)dx

int (tan^(-1)x)dx

Evaluate int tan^(-1) x dx

Evaluate inte^(a tan^-1x)/(1+x^2)dx

Evaluate int tan^(3)x dx

Evaluate: int(e^tan^(-1)(x))/(1+x^2)\ dx

Evaluate: int(sin(tan^(-1)x)/(1+x^2)dx )

Evaluate: int(x^2tan^(-1)x)/(1+x^2)\ dx