Home
Class 12
MATHS
If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(...

If `int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C` , then

A

A=1/3

B

A= -1/3

C

B= 1/6

D

B= -1/6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{(x^2 + 1)(x^2 + 4)} \, dx \) and express it in the form \( A \tan^{-1}(x) + B \tan^{-1}\left(\frac{x}{2}\right) + C \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1}{(x^2 + 1)(x^2 + 4)} \, dx \] To simplify the integration, we can multiply the numerator and denominator by 3: \[ \int \frac{3}{3(x^2 + 1)(x^2 + 4)} \, dx = \frac{1}{3} \int \frac{3}{(x^2 + 1)(x^2 + 4)} \, dx \] ### Step 2: Split the Fraction Next, we can express the numerator \( 3 \) as \( (x^2 + 4) - (x^2 + 1) \): \[ \frac{3}{(x^2 + 1)(x^2 + 4)} = \frac{x^2 + 4}{(x^2 + 1)(x^2 + 4)} - \frac{x^2 + 1}{(x^2 + 1)(x^2 + 4)} \] This allows us to split the integral: \[ \frac{1}{3} \left( \int \frac{1}{x^2 + 1} \, dx - \int \frac{1}{x^2 + 4} \, dx \right) \] ### Step 3: Integrate Each Part Now we can integrate each part separately: 1. The integral of \( \frac{1}{x^2 + 1} \) is \( \tan^{-1}(x) \). 2. The integral of \( \frac{1}{x^2 + 4} \) can be rewritten as \( \frac{1}{2} \cdot \frac{1}{\left(\frac{x}{2}\right)^2 + 1} \), which gives us \( \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right) \). Putting it all together: \[ \frac{1}{3} \left( \tan^{-1}(x) - \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right) \right) + C \] ### Step 4: Simplify the Expression Distributing \( \frac{1}{3} \): \[ \frac{1}{3} \tan^{-1}(x) - \frac{1}{6} \tan^{-1}\left(\frac{x}{2}\right) + C \] ### Step 5: Identify Constants A and B From the expression, we can identify: - \( A = \frac{1}{3} \) - \( B = -\frac{1}{6} \) ### Final Answer Thus, the values of \( A \) and \( B \) are: - \( A = \frac{1}{3} \) - \( B = -\frac{1}{6} \)
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2) , then (a,b) is

If int(dx)/((x^(2)+1)^(2))=(A)/(148)tan^(-1)x+(1)/(2)(x)/(x^(2)+1)+C then A equals.......

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

If int(dx)/((x+1)^(2)(x^(2)+2x+2))=(A)/(x+1)+B tan^(-1)(x+1)+C, where A and B are constants and C is the constant of integration, then |A-B| is equal to

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

If int(1)/((sinx+4)(sinx-1))dx =A(1)/("tan"(x)/(2)-1)+B"tan"^(-1){f(x)}+C . Then,

If int(1)/((sinx+4)(sinx-1))dx =A(1)/("tan"(x)/(2)-1)+B"tan"^(-1){f(x)}+C . Then,

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

int 1/((1+x^2)tan^(-1)x)dx