Home
Class 12
MATHS
If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=in...

If `I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx.` Then for an arbitrary constant c, the value of `J-I` equal to

A

`1/2 log |(e^(4x)-e^(2x)+1)/(e^(4x)+e^(2x)+1)|+C`

B

`1/2 log |(e^(2x)+e^(x)+1)/(e^(2x)-e^(x)+1)|+C`

C

`1/2 log |(e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1)|+C`

D

`1/2 log |(e^(4x)+e^(2x)+1)/(e^(4x)-e^(2x)+1)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I \) and \( J \) and then find \( J - I \). ### Step 1: Define the integrals Let \[ I = \int \frac{e^x}{e^{4x} + e^{2x} + 1} \, dx \] and \[ J = \int \frac{e^{-x}}{e^{-4x} + e^{-2x} + 1} \, dx. \] ### Step 2: Simplify \( J \) We can rewrite \( J \) as follows: \[ J = \int \frac{1/e^x}{1/e^{4x} + 1/e^{2x} + 1} \, dx = \int \frac{1}{\frac{1}{e^x}(e^{4x} + e^{2x} + 1)} \, dx = \int \frac{e^x}{e^{4x} + e^{2x} + 1} \, dx. \] Thus, we have: \[ J = \int \frac{e^x}{e^{4x} + e^{2x} + 1} \, dx = I. \] ### Step 3: Find \( J - I \) Since both integrals are equal, we have: \[ J - I = I - I = 0. \] ### Conclusion The value of \( J - I \) is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int (e^(x)dx)/(e^(2x)+4e^(x)+3)

int(e^x+1/(e^x))^2\ dx

int (e^x)/e^(2x-4) dx

int(e^x)/((1+e^x)(2+e^x))dx

int(e^x+1/(e^x))^2dx

int(dx)/(e^(x)+e^(-x)) equals

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int (e^x +2x)/(e^x+x^2) dx

inte^x/((1+e^x)(e+e^x))dx

(i) int(e^(x))/(1+e^(x))dx" "(ii) int (e^(x)) /((1+e^(x))^(4))dx