Home
Class 12
MATHS
The value of sqrt(2)int(sinx)/(sin(x-(pi...

The value of `sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx` , is

A

`x+log|cos (x-pi/4)|+C`

B

`x+log|sin (x-pi/4)|+C`

C

`x-log|sin (x- pi/4)|+C`

D

`x-log |cos (x- pi/4)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \sqrt{2} \int \frac{\sin x}{\sin(x - \frac{\pi}{4})} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We can express the integral as: \[ I = \sqrt{2} \int \frac{\sin x}{\sin(x - \frac{\pi}{4})} \, dx \] We can use the identity for sine, where \( \sin(a + b) = \sin a \cos b + \cos a \sin b \). ### Step 2: Apply the Sine Addition Formula Using the identity, we rewrite \( \sin x \): \[ \sin x = \sin\left((x - \frac{\pi}{4}) + \frac{\pi}{4}\right) = \sin(x - \frac{\pi}{4}) \cos\frac{\pi}{4} + \cos(x - \frac{\pi}{4}) \sin\frac{\pi}{4} \] Since \( \cos\frac{\pi}{4} = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} \), we have: \[ \sin x = \frac{1}{\sqrt{2}} \sin(x - \frac{\pi}{4}) + \frac{1}{\sqrt{2}} \cos(x - \frac{\pi}{4}) \] ### Step 3: Substitute in the Integral Substituting this back into the integral gives: \[ I = \sqrt{2} \int \frac{\frac{1}{\sqrt{2}} \sin(x - \frac{\pi}{4}) + \frac{1}{\sqrt{2}} \cos(x - \frac{\pi}{4})}{\sin(x - \frac{\pi}{4})} \, dx \] This simplifies to: \[ I = \sqrt{2} \int \left(1 + \cot(x - \frac{\pi}{4})\right) \, dx \] ### Step 4: Separate the Integral We can separate the integral: \[ I = \sqrt{2} \left( \int 1 \, dx + \int \cot(x - \frac{\pi}{4}) \, dx \right) \] ### Step 5: Integrate Each Part 1. The integral of \( 1 \) is simply \( x \). 2. The integral of \( \cot(x - \frac{\pi}{4}) \) is: \[ \int \cot(x - \frac{\pi}{4}) \, dx = \log|\sin(x - \frac{\pi}{4})| + C \] ### Step 6: Combine the Results Putting it all together: \[ I = \sqrt{2} \left( x + \log|\sin(x - \frac{\pi}{4})| \right) + C \] ### Step 7: Simplify the Expression Since \( \sqrt{2} \) is a constant factor, we can distribute it: \[ I = \sqrt{2} x + \sqrt{2} \log|\sin(x - \frac{\pi}{4})| + C \] ### Final Answer Thus, the value of the integral is: \[ \sqrt{2} x + \sqrt{2} \log|\sin(x - \frac{\pi}{4})| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/(sin(x-(pi)/(4)))dx " is equal to "

The value of int(sinx +cosx)/(3+sin2x)dx , is

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

int((sinx+cosx)/(sqrt(sin2x))dx

Evaluate: int(sin4x)/(sinx)\ dx