Home
Class 12
MATHS
If cos(theta-alpha) = a and cos(theta-be...

If `cos(theta-alpha) = a` and `cos(theta-beta) = b` then the value of `sin^2(alpha-beta) + 2ab cos(alpha-beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) \) given that \( \cos(\theta - \alpha) = a \) and \( \cos(\theta - \beta) = b \). ### Step-by-Step Solution: 1. **Express Sine and Cosine in Terms of a and b:** From the given information, we can express \( \sin(\theta - \alpha) \) and \( \sin(\theta - \beta) \) as follows: \[ \sin(\theta - \alpha) = \sqrt{1 - a^2} \] \[ \sin(\theta - \beta) = \sqrt{1 - b^2} \] 2. **Find \( \sin(\alpha - \beta) \):** We can express \( \sin(\alpha - \beta) \) using the sine subtraction formula: \[ \sin(\alpha - \beta) = \sin(\theta - \alpha) \cos(\theta - \beta) - \cos(\theta - \alpha) \sin(\theta - \beta \] Substituting the values we have: \[ \sin(\alpha - \beta) = \sqrt{1 - a^2} \cdot b - a \cdot \sqrt{1 - b^2} \] 3. **Calculate \( \sin^2(\alpha - \beta) \):** Now, we need to square the expression for \( \sin(\alpha - \beta) \): \[ \sin^2(\alpha - \beta) = \left(\sqrt{1 - a^2} \cdot b - a \cdot \sqrt{1 - b^2}\right)^2 \] Expanding this: \[ = (1 - a^2)b^2 - 2ab\sqrt{1 - a^2}\sqrt{1 - b^2} + a^2(1 - b^2) \] \[ = b^2 - a^2b^2 - 2ab\sqrt{(1 - a^2)(1 - b^2)} + a^2 - a^2b^2 \] \[ = a^2 + b^2 - 2a^2b^2 - 2ab\sqrt{(1 - a^2)(1 - b^2)} \] 4. **Find \( \cos(\alpha - \beta) \):** Using the cosine subtraction formula: \[ \cos(\alpha - \beta) = \cos(\theta - \beta) \cos(\theta - \alpha) + \sin(\theta - \beta) \sin(\theta - \alpha) \] Substituting the values: \[ = b \cdot a + \sqrt{1 - b^2} \cdot \sqrt{1 - a^2} \] \[ = ab + \sqrt{(1 - a^2)(1 - b^2)} \] 5. **Substitute into the Original Expression:** Now, substitute \( \sin^2(\alpha - \beta) \) and \( \cos(\alpha - \beta) \) into the original expression: \[ \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) = \left(a^2 + b^2 - 2a^2b^2 - 2ab\sqrt{(1 - a^2)(1 - b^2)}\right) + 2ab(ab + \sqrt{(1 - a^2)(1 - b^2)}) \] Simplifying this gives: \[ = a^2 + b^2 - 2a^2b^2 + 2a^2b^2 + 2ab\sqrt{(1 - a^2)(1 - b^2)} \] \[ = a^2 + b^2 \] ### Final Answer: Thus, the value of \( \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) \) is: \[ \boxed{a^2 + b^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If sin(theta+alpha)=aa n dsin(theta+beta)=b , prove that cos2(alpha-beta)-4a bcos(alpha-beta)=1-2a^2-2b^2

If sin(theta+alpha)=a, a n dsin(theta+beta)=b , prove that cos2(alpha-beta)-4a bcos(alpha-beta)=1-2a^2-2b^2

Let (sin(theta-alpha))/("sin"(theta-beta))=a/b a n d(cos(theta-alpha))/("cos"(theta-beta))=c /d t h e n(a c+b d)/(a d+b c)= (a) cos(alpha-beta) (b) sin(alpha-beta) sin(alpha+beta) (d) none of these

If sin(theta+alpha)=a,cos^(2)(theta+beta)=b, then sin(alpha-beta)=

If cos(alpha+beta)=0 then sin(alpha+2beta)=

If cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2) , then prove that cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)

If theta is eliminated from the equations x=a"cos"(theta-alpha) and y=bcos(theta-beta), then (x^2/a^2)+(y^2/b^2)-(2xy)/(ab)cos(alpha-beta) is equal to (a) sec^2(alpha-beta) (b) cos e c^2(alpha-beta) (c) cos^2(alpha-beta) (d) sin^2(alpha-beta)

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

If cos alpha = (3)/(5) , cos beta = (4)/(5) , find the value of cos ""(( alpha - beta)/( 2)), assuming alpha and beta to be acute angles.