Home
Class 12
MATHS
Find the value of cos^4 (pi / 8)...

Find the value of `cos^4 (pi / 8)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos^4 \left( \frac{\pi}{8} \right) \), we can use trigonometric identities. Here’s a step-by-step solution: ### Step 1: Use the double angle formula for cosine We know that: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] Let \( \theta = \frac{\pi}{8} \), then \( 2\theta = \frac{\pi}{4} \). Therefore: \[ \cos\left(\frac{\pi}{4}\right) = 2\cos^2\left(\frac{\pi}{8}\right) - 1 \] ### Step 2: Substitute the known value of \( \cos\left(\frac{\pi}{4}\right) \) We know that: \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Substituting this into the equation gives: \[ \frac{1}{\sqrt{2}} = 2\cos^2\left(\frac{\pi}{8}\right) - 1 \] ### Step 3: Solve for \( \cos^2\left(\frac{\pi}{8}\right) \) Rearranging the equation: \[ 2\cos^2\left(\frac{\pi}{8}\right) = \frac{1}{\sqrt{2}} + 1 \] To combine the terms on the right, we can write \( 1 \) as \( \frac{\sqrt{2}}{\sqrt{2}} \): \[ 2\cos^2\left(\frac{\pi}{8}\right) = \frac{1 + \sqrt{2}}{\sqrt{2}} \] Now divide both sides by 2: \[ \cos^2\left(\frac{\pi}{8}\right) = \frac{1 + \sqrt{2}}{2\sqrt{2}} \] ### Step 4: Find \( \cos^4\left(\frac{\pi}{8}\right) \) Now, we need to find \( \cos^4\left(\frac{\pi}{8}\right) \): \[ \cos^4\left(\frac{\pi}{8}\right) = \left(\cos^2\left(\frac{\pi}{8}\right)\right)^2 = \left(\frac{1 + \sqrt{2}}{2\sqrt{2}}\right)^2 \] Calculating this gives: \[ \cos^4\left(\frac{\pi}{8}\right) = \frac{(1 + \sqrt{2})^2}{(2\sqrt{2})^2} = \frac{1 + 2\sqrt{2} + 2}{8} = \frac{3 + 2\sqrt{2}}{8} \] ### Final Answer Thus, the value of \( \cos^4\left(\frac{\pi}{8}\right) \) is: \[ \boxed{\frac{3 + 2\sqrt{2}}{8}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|9 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Find the values of cos pi/8

Find the value of 2cos^3(pi/7)-cos^2(pi/7)-cos(pi/7)

Find the value of cos""(pi)/(12)(sin""(5pi)/(12)+cos""(pi)/(4))+sin""(pi)/(12)(cos""(5pi)/(12)-sin""(pi)/(4)) .

Find the value of 2cos((5pi)/12) cos(pi/12) and 2sin((5pi)/12)cos(pi/12)

Find the value of cos^2pi/(16)+cos^2(3pi)/(16)+cos^2(5pi)/(16)+cos^2(7pi)/(16)dot

Find the value of cos^2. pi/16+cos^2. (3pi)/16+cos^2. (5pi)/16+cos^2. (7pi)/16 .

If sin ^(-1) x =(pi)/(4) , find the value of cos^(-1) x .

Find the value of tan pi/8 .

Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)

Find the value of cos(2pi)/7+cos(4pi)/7+cos(6pi)/7